SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information

被引:47
|
作者
Cheng, Shuhong [1 ]
Sun, Changhe [1 ]
Zhang, Shijun [2 ]
Zhang, Dianfan [3 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066000, Hebei, Peoples R China
[2] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066000, Hebei, Peoples R China
[3] Yanshan Univ, Key Lab Special Delivery Equipment, Qinhuangdao 066004, Hebei, Peoples R China
关键词
Semantics; Heuristic algorithms; Measurement; Simultaneous localization and mapping; Visualization; Vehicle dynamics; Robots; Dynamic scenes; geometric constraint; semantic metric map; visual-based measurement; visual simultaneous localization and mapping (SLAM); SIMULTANEOUS LOCALIZATION;
D O I
10.1109/TIM.2022.3228006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) is one of the fundamental capabilities for intelligent mobile robots to perform state estimation in unknown environments. However, most visual SLAM systems rely on the static scene assumption and consequently have severely reduced accuracy and robustness in dynamic scenes. Moreover, the metric maps constructed by many systems lack semantic information, so the robots cannot understand their surroundings at a human cognitive level. In this article, we propose SG-SLAM, which is a real-time RGB-D semantic visual SLAM system based on the ORB-SLAM2 framework. First, SG-SLAM adds two new parallel threads: an object detecting thread to obtain 2-D semantic information and a semantic mapping thread. Then, a fast dynamic feature rejection algorithm combining semantic and geometric information is added to the tracking thread. Finally, they are published to the robot operating system (ROS) system for visualization after generating 3-D point clouds and 3-D semantic objects in the semantic mapping thread. We performed an experimental evaluation on the TUM dataset, the Bonn dataset, and the OpenLORIS-Scene dataset. The results show that SG-SLAM is not only one of the most real-time, accurate, and robust systems in dynamic scenes but also allows the creation of intuitive semantic metric maps.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] RS-SLAM: A Robust Semantic SLAM in Dynamic Environments Based on RGB-D Sensor
    Ran, Teng
    Yuan, Liang
    Zhang, Jianbo
    Tang, Dingxin
    He, Li
    IEEE SENSORS JOURNAL, 2021, 21 (18) : 20657 - 20664
  • [32] A robust RGB-D SLAM based on multiple geometric features and semantic segmentation in dynamic environments
    Kuang, Benfa
    Yuan, Jie
    Liu, Qiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (01)
  • [33] DRV-SLAM: An Adaptive Real-Time Semantic Visual SLAM Based on Instance Segmentation Toward Dynamic Environments
    Ji, Qiang
    Zhang, Zikang
    Chen, Yifu
    Zheng, Enhui
    IEEE ACCESS, 2024, 12 : 43827 - 43837
  • [34] Semantic Segmentation based Dense RGB-D SLAM in Dynamic Environments
    Zhang, Jianbo
    Liu, Yanjie
    Chen, Junguo
    Ma, Liulong
    Jin, Dong
    Chen, Jiao
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, AUTOMATION AND CONTROL TECHNOLOGIES (AIACT 2019), 2019, 1267
  • [35] RGB-D Sensor Based Real-time 6DoF-SLAM
    Chen, Hsi-Yuan
    Lin, Chyi-Yeu
    2014 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS 2014), 2014, : 61 - 65
  • [36] Dense Visual SLAM for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2100 - 2106
  • [37] A 3D Semantic Visual SLAM in Dynamic Scenes
    Hu, Shanshan
    Li, Dan
    Tang, Gujie
    Xu, Xiangrong
    2021 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2021), 2021, : 522 - 528
  • [38] GPU-Based Real-Time RGB-D 3D SLAM
    Lee, Donghwa
    Kim, Hyongjin
    Myung, Hyun
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 46 - 48
  • [39] RVD-SLAM: A Real-Time Visual SLAM Toward Dynamic Environments Based on Sparsely Semantic Segmentation and Outlier Prior
    Zhou, Yao
    Tao, Fazhan
    Fu, Zhumu
    Zhu, Longlong
    Ma, Haoxiang
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30773 - 30785
  • [40] Real-time motion removal based on point correlations for RGB-D SLAM in indoor dynamic environments
    Kesai Wang
    Xifan Yao
    Nanfeng Ma
    Xuan Jing
    Neural Computing and Applications, 2023, 35 : 8707 - 8722