Lonely Points in Simplices

被引:0
|
作者
Jaroschek, Maximilian [1 ]
Kauers, Manuel [2 ]
Kovacs, Laura [3 ]
机构
[1] QAware Gmbh, Aschauer Str 32, D-81549 Munich, Germany
[2] Johannes Kepler Univ Linz, Inst Algebra, Altenbergerstr 69, A-4040 Linz, Austria
[3] TU Wien, Inst Log & Computat, Favoritenstr 9-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Integer points; Polytopes; Lattices; Discrete geometry;
D O I
10.1007/s00454-022-00428-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a lattice L subset of Z(m) and a subset A subset of R-m, we say that a point in A is lonely if it is not equivalent modulo L to another point of A. We are interested in identifying lonely points for specific choices of L when A is a dilated standard simplex, and in conditions on L which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.
引用
收藏
页码:4 / 25
页数:22
相关论文
共 50 条