Textural feature descriptors for a static and dynamic hand gesture recognition system

被引:2
|
作者
Ferhat, Roumiassa [1 ]
Chelali, Fatma Zohra [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Speech Commun & Signal Proc Lab, Fac Elect Engn, Bab Ezzouar 16111, Algeria
关键词
Hand gesture recognition; LBP; LOOP; LDP; Gabor Binary patter; SVM; etc; EXTRACTION; MODEL;
D O I
10.1007/s11042-023-15410-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hand gesture recognition has become one of the most important directions in human-computer interaction (HCI) research. Despite recent advances in this area, the development of methods and techniques to correctly recognize gestures is still ongoing. In this paper, a hand gesture and sign recognition system (HGRS/SGRS) based on textural features is implemented using a local binary pattern (LBP), local directional pattern (LDP), local optimal-oriented pattern (LOOP) and local Gabor binary pattern histogram sequence (LGBPHS). In terms of feature extraction, we introduce Modified(i)-LOOP, a modified local texture descriptor for HGRS and SGRS to improve the efficiency of our system. The experiments are carried out on five datasets, for Arabic, American Alphabet Sign languages and dynamic gestures where the proposed M-i-LOOP as well as LGBPHS achieve satisfactory simulation results.
引用
收藏
页码:8165 / 8187
页数:23
相关论文
共 50 条
  • [21] Comparison of Recognition Accuracy on Dynamic Hand Gesture Using Feature Selection
    Sooai, Adri Gabriel
    Batarius, Patrisius
    Siki, Yovinia Carmeneja Hoar
    Nani, Paskalis Andrianus
    Mamulak, Natalia Magdalena Rafu
    Ngaga, Emerensiana
    Rosiani, Ulla Delfana
    Sumpeno, Surya
    Purnomo, Mauridhi Hery
    Mau, Sisilia Daeng Bakka
    2018 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, NETWORK AND INTELLIGENT MULTIMEDIA (CENIM), 2018, : 270 - 274
  • [22] Feature covariance matrix-based dynamic hand gesture recognition
    Linpu Fang
    Guile Wu
    Wenxiong Kang
    Qiuxia Wu
    Zhiyong Wang
    David Dagan Feng
    Neural Computing and Applications, 2019, 31 : 8533 - 8546
  • [23] FSSGR: Feature Selection System to Dynamic Gesture Recognition
    Santos, Diego G. S.
    Neto, Rodrigo C.
    Fernandes, Bruno
    Bezerra, Byron
    NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2015 WORKSHOPS, 2015, 9281 : 234 - 241
  • [24] Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping
    Plouffe, Guillaume
    Cretu, Ana-Maria
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (02) : 305 - 316
  • [25] Feature extraction from 2D gesture trajectory in dynamic hand gesture recognition
    Bhuyan, M. K.
    Ghosh, D.
    Bora, P. K.
    2006 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, : 748 - +
  • [26] Visual recognition of static dynamic gesture: Gesture-driven editing system
    Min, BW
    Yoon, HS
    Soh, J
    Ohashi, T
    Ejima, T
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 1999, 10 (03): : 291 - 309
  • [27] A Static Hand Gesture Recognition System to Recognize the Total number of Fingers
    Vishwakarma, D. K.
    Majithia, Sahib
    Mishra, Nikhil Kumar
    2017 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN SIGNAL PROCESSING AND EMBEDDED SYSTEMS (RISE), 2017, : 332 - 337
  • [28] A static hand gesture recognition system using a composite neural network
    Su, MC
    Jean, WF
    Chang, HT
    FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 786 - 792
  • [29] Real Time Static Hand Gesture Recognition System for Mobile Devices
    Lahiani, Houssem
    Elleuch, Mohamed
    Kherallah, Monji
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2016, 11 (02): : 67 - 76
  • [30] A Real-Time Computer Vision-Based Static and Dynamic Hand Gesture Recognition System
    Jasim, Mahmood
    Zhang, Tao
    Hasanuzzaman, Md.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (1-2)