Bounded-Magnitude Discrete Fourier Transform

被引:0
|
作者
Schlecht, Sebastian J. [1 ]
Valimaki, Vesa [2 ]
Habets, Emanuel A. P. [3 ,4 ]
机构
[1] Aalto Univ, Dept Informat & Commun Engn & Media Labs, Dept Art & Media, Practice Sound Virtual Real Acoust Lab, Espoo 00076, Finland
[2] Aalto Univ, Dept Informat & Commun Engn, Acoust Lab, Espoo, Finland
[3] Int Audio Labs Erlangen, Jjoint Inst Friedrich Alexander Univ Erlangen Nur, Erlangen, Germany
[4] Fraunhofer IIS, Dept Conversat Artificial Intelligence Res, D-91058 Erlangen, Germany
关键词
Interpolation; Discrete Fourier transforms; Data visualization; Task analysis; Signal resolution;
D O I
10.1109/MSP.2022.3228526
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analyzing the magnitude response of a finite-length sequence is a ubiquitous task in signal processing. However, the discrete Fourier transform (DFT) provides only discrete sampling points of the response characteristic. This work introduces bounds on the magnitude response, which can be efficiently computed without additional zero padding. The proposed bounds can be used for more informative visualization and inform whether additional frequency resolution or zero padding is required.
引用
收藏
页码:46 / 49
页数:4
相关论文
共 50 条
  • [41] SUPERPOSITION THEOREM OF DISCRETE FOURIER TRANSFORM AND ITS APPLICATION TO FAST FOURIER TRANSFORM
    ACHILLES, D
    ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK, 1971, 25 (05): : 251 - &
  • [42] PSEUDORANDOMNESS VIA THE DISCRETE FOURIER TRANSFORM
    Gopalan, Parikshit
    Kane, Daniel M.
    Meka, Raghu
    SIAM JOURNAL ON COMPUTING, 2018, 47 (06) : 2451 - 2487
  • [43] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [44] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [45] THE DISCRETE FREQUENCY FOURIER-TRANSFORM
    JENKINS, WK
    DESAI, MD
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (07): : 732 - 734
  • [46] On the communication complexity of the discrete Fourier transform
    Toledo, S
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (06) : 171 - 172
  • [47] FUNDAMENTALS OF DISCRETE FOURIER-TRANSFORM
    RICHARDSON, MH
    SOUND AND VIBRATION, 1978, 12 (03): : 40 - 46
  • [48] Discrete Fourier transform and Grobner bases
    Poli, A
    Gennero, MC
    Xin, D
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 444 - 453
  • [49] The Discrete Fourier Transform of a Recurrent Sequence
    Francis Clarke
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 485 - 489
  • [50] Computational complexity of the discrete Fourier transform
    Bykovskii, VA
    DOKLADY MATHEMATICS, 2003, 67 (02) : 193 - 195