Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society

被引:100
|
作者
Hassan, N. S. [1 ,2 ]
Jalil, A. A. [1 ,2 ]
Rajendran, S. [3 ]
Khusnun, N. F. [1 ,2 ]
Bahari, M. B. [4 ]
Johari, A. [1 ,2 ]
Kamaruddin, M. J. [1 ,2 ]
Ismail, M. [1 ,5 ]
机构
[1] Inst Future Energy, Ctr Hydrogen Energy, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, Johor Baharu 81310, Johor, Malaysia
[3] Univ Tarapaca, Inst Alta Invest, Arica 1000000, Chile
[4] Univ Teknol Malaysia, Fac Sci, Johor Baharu 81310, Johor, Malaysia
[5] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Energy Storage Res Grp, Terengganu 21030, Malaysia
关键词
Water electrolysis; Green hydrogen; Nanomaterials; Techno-economics; Environmental aspects; LIFE-CYCLE ASSESSMENT; PHOTOCATALYTIC ACTIVITY; EFFICIENT; PHOTOANODE; ELECTROCATALYSTS; NANOPARTICLES; NANOMATERIALS; INSIGHTS; GROWTH;
D O I
10.1016/j.ijhydene.2023.09.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Countries worldwide are seeking to decarbonize the planet by 2050 to mitigate climate change. Green hydrogen (H2) from water electrolysis is vital to worldwide decarbonization. Consequently, electrolysis-based green H2 production for large-scale renewable energy power plants and other industrial and transportation applications has grown in popularity. The main objective of this work was to provide a recent review and evaluation of water electrolysis for green H2 production. In this review, the water electrolysis process, which involves the electrochemical water splitting and photoelectrochemical (PEC) water splitting and their techno-commercial prospects including H2 production cost, along with recent developments in electrode and photoelectrode materials, and their environmental aspects for green H2 production were summarized. The results showed that the Ni-based catalyst improved the electrocatalytic activity at a current density of 10 mA/cm2, while TiO2-based catalysts enhanced PEC water-splitting processes with superior solar to H2 (STH) efficiency (3.7-16.9%). The levelized cost of H2 (LCOH) for PEC and polymer exchange membrane (PEM) electrolysis is almost similar about 9 $/kgH2, and combining water electrolysis with wind and solar energy decreases the LCOH, which surpassed coal power generation by 40%. According to the results of a life cycle assessment (LCA), global warming potential (GWP) is the environmental effect category that causes the most concern and is the subject of the most research. The PEC-based water splitting process is the most environmentally friendly H2 production method since it emits the lowest GWP per kg of produced H2 (1.0 kg CO2/Kg H2) in comparison to wind-based PEM water electrolysis (4.0 kg CO2/Kg H2) and PV-solar -based PEM water electrolysis (1.5 kg CO2/Kg H2). Interestingly, the case studies in various countries related to the green H2 were also discussed. Finally, the future of green H2 pro-duction and the challenges it faces in achieving cost-effective commercial applications were discussed.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:420 / 441
页数:22
相关论文
共 50 条
  • [21] Hydrogen - imminent clean and green energy: Hydrogen production technologies life cycle assessment review
    Kodgire, Pravin
    Process Safety and Environmental Protection, 2025, 193 : 483 - 500
  • [22] Hydrogen production by water electrolysis technologies: A review
    El-Shafie, Mostafa
    RESULTS IN ENGINEERING, 2023, 20
  • [23] Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production
    Li, Jiachen
    Ma, Yuqiang
    Mu, Xiaogang
    Wang, Xuanjun
    Li, Yang
    Ma, Haixia
    Guo, Zhengxiao
    ADVANCED SCIENCE, 2025,
  • [24] Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production
    Nnabuife, Somtochukwu Godfrey
    Hamzat, Abdulhammed K.
    Whidborne, James
    Kuang, Boyu
    Jenkins, Karl W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 107 : 218 - 240
  • [25] Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review
    Kumar, S. Shiva
    Lim, Hankwon
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (15) : 3560 - 3583
  • [26] Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis
    Yilmaz, Ceyhun
    Kanoglu, Mehmet
    ENERGY, 2014, 69 : 592 - 602
  • [27] Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis
    Kanoglu, Mehmet (kanoglu@gantep.edu.tr), 1600, Elsevier Ltd (69):
  • [28] Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis
    Kanoglu, M. (kanoglu@gantep.edu.tr), 1600, Elsevier Ltd (69):
  • [29] Sustainable Energy Solutions: Utilising UGS for Hydrogen Production by Electrolysis
    Zelenika, Ivan
    Mavar, Karolina Novak
    Medved, Igor
    Pavlovic, Darko
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [30] A review of recent advances in hydrogen fueled Wankel engines for clean energy transition and sustainable mobility
    Singh, Parampreet
    Paparao, Jami
    Singh, Paramvir
    Kumbhakarna, Neeraj
    Kumar, Sudarshan
    FUEL, 2025, 387