Unsupervised Deep Learning for Distributed Service Function Chain Embedding

被引:0
|
作者
Rodis, Panteleimon [1 ]
Papadimitriou, Panagiotis [1 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki 54636, Greece
关键词
Substrates; Greedy algorithms; Deep learning; Computational modeling; Bandwidth; Service function chaining; Search problems; Network function virtualization; Distributed computing; resource orchestration; deep learning; distributed computation; NETWORKS;
D O I
10.1109/ACCESS.2023.3308492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network Function Virtualization (NFV) has paved the way for the migration of Virtual Network Functions (VNFs) into multi-tenant datacenters, lowering the barrier for the introduction of new processing functionality into the network. Recent trends for resource orchestration across the entire compute continuum raise the need for decision making at low timescales, a requirement which can be hardly met by centralized resource optimizers that rely either on Linear Programming or Machine Learning (ML). In this respect, we present a distributed approach tailored to a crucial resource orchestration aspect, i.e., the embedding of Service Function Chains (SFCs) onto large-scale virtualized network infrastructures. In order to confront the computational hardness of the SFC embedding problem, we utilize a clustering method for the partitioning of the solution space, empowering the search for efficient solutions in parallel across all clusters. Another salient feature of our approach is the use of unsupervised deep learning for the computation of embeddings within each cluster. Our distributed SFC embedding framework is benchmarked against a state-of-the-art heuristic and a distributed greedy algorithm. Our evaluation results uncover notable gains in terms of resource efficiency, combined with solver runtimes in the order of milliseconds with thousands of substrate nodes.
引用
收藏
页码:91660 / 91672
页数:13
相关论文
共 50 条
  • [41] Service Function Chain Deployment Algorithm Based on Multi-Agent Deep Reinforcement Learning
    Huang, Wanwei
    Zhang, Qiancheng
    Liu, Tao
    Xu, Yaoli
    Zhang, Dalei
    [J]. Computers, Materials and Continua, 2024, 80 (03): : 4875 - 4893
  • [42] Service Function Chain Reconfiguration in 5G Core Networks Using Deep Learning
    Setayesh, Mehdi
    Wong, Vincent W. S.
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [43] A Mobility-Aware Service Function Chain Migration Strategy Based on Deep Reinforcement Learning
    Hefei Hu
    Wei Zhang
    Lingyi Xu
    Panjie Qi
    [J]. Journal of Network and Systems Management, 2023, 31
  • [44] Service Function Chain Placement in Distributed Scenarios: A Systematic Review
    Guto Leoni Santos
    Diego de Freitas Bezerra
    Élisson da Silva Rocha
    Leylane Ferreira
    André Luis Cavalcanti Moreira
    Glauco Estácio Gonçalves
    Maria Valéria Marquezini
    Ákos Recse
    Amardeep Mehta
    Judith Kelner
    Djamel Sadok
    Patricia Takako Endo
    [J]. Journal of Network and Systems Management, 2022, 30
  • [45] Service Function Chain Placement in Distributed Scenarios: A Systematic Review
    Santos, Guto Leoni
    Bezerra, Diego de Freitas
    Rocha, Elisson da Silva
    Ferreira, Leylane
    Moreira, Andre Luis Cavalcanti
    Goncalves, Glauco Estacio
    Marquezini, Maria Valeria
    Recse, Akos
    Mehta, Amardeep
    Kelner, Judith
    Sadok, Djamel
    Endo, Patricia Takako
    [J]. JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [46] SCHEMA: Service Chain Elastic Management with Distributed Reinforcement Learning
    Dalgkitsis, Anestis
    Garrido, Luis A.
    Mekikis, Prodromos-Vasileios
    Ramantas, Kostas
    Alonso, Luis
    Verikoukis, Christos
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [47] Cost-Efficient Dynamic Service Function Chain Embedding in Edge Clouds
    Chen, Weihan
    Wang, Zhiliang
    Zhang, Han
    Yin, Xia
    Shi, Xingang
    [J]. PROCEEDINGS OF THE 2021 17TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM 2021): SMART MANAGEMENT FOR FUTURE NETWORKS AND SERVICES, 2021, : 310 - 318
  • [48] Service Function Chain Embedding Framework for NFV-Enabled IoT Application
    Hu, Yue
    Lou, Sijia
    Wu, Shengchen
    Yang, Longxiang
    [J]. 2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), 2020, : 80 - 84
  • [49] Cost-Efficient Cluster Migration of VNFs for Service Function Chain Embedding
    Afrasiabi, Seyedeh Negar
    Ebrahimzadeh, Amin
    Promwongsa, Nattakorn
    Mouradian, Carla
    Li, Wubin
    Recse, Akos
    Szabo, Robert
    Glitho, Roch H.
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 979 - 993
  • [50] Bidirectional Service Function Chain Embedding for Interactive Applications in Mobile Edge networks
    Tian, Fengsen
    Zhang, Xinglin
    Liang, Junbin
    Yang, Zheng
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 3964 - 3980