ADAPTIVE ENTROPY REGULARIZATION FOR UNSUPERVISED DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION

被引:0
|
作者
Shi, Andrew [1 ]
Feng, Wei [1 ]
机构
[1] Beijing Airdoc Technol Co Ltd, Beijing, Peoples R China
关键词
Unsupervised domain adaptation; entropy regularization; medical image segmentation;
D O I
10.1109/ISBI53787.2023.10230637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The unsupervised domain adaptation approach based on adversarial training has achieved promising performance in cross-modality medical image analysis tasks. However, deep learning models often produce overconfident but incorrect predictions, which is exacerbated in the presence of domain shifts. In this paper, we propose an adaptive entropy regularization framework for unsupervised domain adaptation in cross-modality medical image segmentation. Our framework consists of two key designs: pixel reliability assessment and entropy-based confidence regularization. We first assess pixel reliability based on the model's predictive consistency over a set of label-preserving randomly augmented image sets. We then propose an entropy-based confidence regularization strategy, which increases the confidence level by minimizing the information entropy of reliable pixels while maximizing the information entropy of unreliable pixels to diversify their predictions and alleviate the problem of overconfident but incorrect predictions. Extensive experiments on cross-modality cardiac structure segmentation tasks show that our approach outperforms other state-of-the-art UDA methods by a large margin. Our code will be released soon.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [11] Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation
    Barbato, Francesco
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2829 - 2839
  • [12] Entropy regularization, automatic model selection, and unsupervised image segmentation
    Lu, Zhiwu
    Lu, Xiaoqing
    Ye, Zhiyuan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 173 - +
  • [13] A Multi-task Unsupervised Domain Adaptation Network for Medical Image Segmentation
    Shi, Yuejing
    Zhu, Fan
    Peng, Yan
    Ye, Zhen
    Zhou, Chaozheng
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND INTELLIGENT CONTROL (IPIC 2021), 2021, 11928
  • [14] Unsupervised domain adaptation network for medical image segmentation with generative adversarial networks
    Huang, Xiji
    Chen, Lingna
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 380 - 382
  • [15] Fusing feature and output space for unsupervised domain adaptation on medical image segmentation
    Wang, Shengsheng
    Fu, Zihao
    Wang, Bilin
    Hu, Yulong
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1672 - 1681
  • [16] Unsupervised Domain Adaptation for Medical Image Segmentation Using Transformer With Meta Attention
    Ji, Wen
    Chung, Albert C. S.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 820 - 831
  • [17] Dual domain distribution disruption with semantics preservation: Unsupervised domain adaptation for medical image segmentation
    Zheng, Boyun
    Zhang, Ranran
    Diao, Songhui
    Zhu, Jingke
    Yuan, Yixuan
    Cai, Jing
    Shao, Liang
    Li, Shuo
    Qin, Wenjian
    MEDICAL IMAGE ANALYSIS, 2024, 97
  • [18] Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation
    Chen, Xu
    Kuang, Tianshu
    Deng, Hannah
    Fung, Steve H.
    Gateno, Jaime
    Xia, James J.
    Yap, Pew-Thian
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (11) : 3445 - 3453
  • [19] Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training
    Xie, Qingsong
    Li, Yuexiang
    He, Nanjun
    Ning, Munan
    Ma, Kai
    Wang, Guoxing
    Lian, Yong
    Zheng, Yefeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 4 - 14
  • [20] OLVA: Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation
    Al Chanti, Dawood
    Mateus, Diana
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 261 - 271