IMPROVED ESTIMATION OF RELAXATION TIME IN NONREVERSIBLE MARKOV CHAINS

被引:0
|
作者
Wolfer, Geoffrey [1 ]
Kontorovich, Aryeh [2 ]
机构
[1] RIKEN, Ctr AI Project, Wako, Saitama, Japan
[2] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
来源
ANNALS OF APPLIED PROBABILITY | 2024年 / 34卷 / 1A期
基金
以色列科学基金会;
关键词
Ergodic Markov chain; mixing time; pseudo-spectral gap; empirical confidence interval; ALGORITHMS; CONVERGENCE; LANCZOS; RATES;
D O I
10.1214/23-AAP1963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the minimax sample complexity for estimating the pseudo spectral gap gamma(ps) of an ergodic Markov chain in constant multiplicative error is of the order of (Theta) over tilde (1/gamma(ps)pi(star)), where pi(star) is the minimum stationary probability, recovering the known bound in the reversible setting for estimating the absolute spectral gap (Hsu et al., Ann. Appl. Probab. 29 (2019) 2439-2480), and resolving an open problem of Wolfer and Kontorovich (In Proceedings of the Thirty-Second Conference on Learning Theory (2019) 3120-3159 PMLR). Furthermore, we strengthen the known empirical procedure by making it fully-adaptive to the data, thinning the confidence intervals and reducing the computational complexity. Along the way, we derive new properties of the pseudo-spectral gap and introduce the notion of a reversible dilation of a stochastic matrix.
引用
收藏
页码:249 / 276
页数:28
相关论文
共 50 条