Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus

被引:5
|
作者
Butt, Saad Ihsan [1 ]
Aftab, Muhammad Nasim [1 ]
Nabwey, Hossam A. [2 ]
Etemad, Sina [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
[2] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Al Ayen Univ, Sci Res Ctr, Math Appl Sci & Engn Res Grp, Nasiriyah 64001, Iraq
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
Hermite-Hadamard inequality; convex functions; symmetric quantum calculus; NEWTON-TYPE INEQUALITIES; CONVEX;
D O I
10.3934/math.2024268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval [b0, b1] subset of 2Z., we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at b0 is an element of [b0, b1] subset of 2Z.. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point b1, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.
引用
收藏
页码:5523 / 5549
页数:27
相关论文
共 50 条
  • [1] QUANTUM HERMITE-HADAMARD TYPE INEQUALITY AND SOME ESTIMATES OF QUANTUM MIDPOINT TYPE INEQUALITIES FOR DOUBLE INTEGRALS
    Kunt, Mehmet
    Latif, Muhammad Amer
    Iscan, Imdat
    Dragomir, Silvestru Sever
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (01): : 207 - 223
  • [2] Hermite-Hadamard's like inequalities via symmetric quantum calculus
    Liu, Qi
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Ciurdariu, Loredana
    Alkahtani, Badr S.
    AIN SHAMS ENGINEERING JOURNAL, 2025, 16 (06)
  • [3] On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus
    Sial, Ifra Bashir
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Ntouyas, Sotiris K.
    Soontharanon, Jarunee
    Sitthiwirattham, Thanin
    SYMMETRY-BASEL, 2021, 13 (10):
  • [4] Generalization of quantum calculus and corresponding Hermite-Hadamard inequalities
    Akbar, Saira Bano
    Abbas, Mujahid
    Budak, Hueseyin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [5] ON SOME HERMITE-HADAMARD INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Zafar, Azhar Ali
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 111 - 122
  • [6] Generalization of Hermite-Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus
    Mateen, Abdul
    Zhang, Zhiyue
    Ozcan, Serap
    Ali, Muhammad Aamir
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [7] Some quantum estimates for Hermite-Hadamard inequalities
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 675 - 679
  • [8] Some generalizations of Hermite-Hadamard type inequalities
    Delavar, M. Rostamian
    De La Sen, M.
    SPRINGERPLUS, 2016, 5
  • [9] SOME NEW INEQUALITIES ON GENERALIZATION OF HERMITE-HADAMARD AND BULLEN TYPE INEQUALITIES, APPLICATIONS TO TRAPEZOIDAL AND MIDPOINT FORMULA
    Iscan, Imdat
    Toplu, Tekin
    Yetgin, Fatih
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (04): : 647 - 657
  • [10] SOME NEW HERMITE-HADAMARD INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS
    Ali, M. A.
    Abbas, M.
    Budak, H.
    Kashuri, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 1183 - 1193