Validation of model-based adaptive control method for real-time hybrid simulation

被引:1
|
作者
Ning, Xizhan [1 ,2 ]
Huang, Wei [1 ]
Xu, Guoshan [3 ]
Wang, Zhen [4 ]
Zheng, Lichang [3 ]
机构
[1] Huaqiao Univ, Coll Civil Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Key Lab Intelligent Infrastruct & Monitoring Fujia, Xiamen 361021, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[4] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
feedforward and feedback; Kalman filter; model-based adaptive control; real time hybrid simulation; DELAY COMPENSATION; ACTUATOR CONTROL; STABILITY; SYSTEM;
D O I
10.12989/sss.2023.31.3.259
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.
引用
收藏
页码:259 / 273
页数:15
相关论文
共 50 条
  • [21] Model-based system for real-time process control
    Beijing Univ of Science and, Technology, Beijing, China
    Kang T'ieh, 9 (60-63):
  • [22] Model-based optimal rate control algorithm for real-time hybrid video encoder
    Lin, He-Yuan
    Lee, Gwo Giun
    Wang, Ming-Jiun
    Su, Drew Wei-Chi
    Lin, Bo-Yun
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 4455 - +
  • [23] A Hybrid Real-Time Simulation Method for Distribution Grid Control
    Krata, Jaroslaw
    PROCEEDINGS OF THE 2016 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2016,
  • [24] An hybrid method for the validation of real-time systems
    Kaiser, L
    Simonot-Lion, F
    FIELDBUS SYSTEMS AND THEIR APPLICATIONOS 2001 (FET'2001), 2002, : 231 - 238
  • [25] A real-time hybrid simulation method based on multitasking loading
    Wang, Tao
    Hao, Jiedun
    Xu, Guoshan
    Wang, Zhen
    Meng, Liyan
    Zheng, Huan
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2023, 32 (14-15):
  • [26] Model-based real-time control of a magnetic manipulator system
    Damsteeg, Jan-Willem
    Nageshrao, Subramanya P.
    Babuska, Robert
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [27] Adaptive Feedforward and Feedback Compensation Method for Real-time Hybrid Simulation Based on a Discrete Physical Testing System Model
    Ning, Xizhan
    Wang, Zhen
    Wang, Chunpeng
    Wu, Bin
    JOURNAL OF EARTHQUAKE ENGINEERING, 2022, 26 (08) : 3841 - 3863
  • [28] Model-based, real-time control of electrical power systems
    Univ of Central Florida, Orlando, United States
    IEEE Trans Syst Man Cybern Pt A Syst Humans, 4 (470-482):
  • [29] Model-based, real-time control of electrical power systems
    Gonzalez, AJ
    Morris, RA
    McKenzie, FD
    Carreira, DJ
    Gann, BK
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1996, 26 (04): : 470 - 482
  • [30] Model-based Testing of Real-time Adaptive Motion Planning (RAMP)
    Abdelgawad, Mahmoud
    McLeod, Sterling
    Andrews, Anneliese
    Xiao, Jing
    2016 IEEE INTERNATIONAL CONFERENCE ON SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR), 2016, : 162 - 169