Severity Prediction of Highway Crashes in Saudi Arabia Using Machine Learning Techniques

被引:15
|
作者
Aldhari, Ibrahim [1 ]
Almoshaogeh, Meshal [1 ]
Jamal, Arshad [2 ]
Alharbi, Fawaz [1 ]
Alinizzi, Majed [1 ]
Haider, Husnain [1 ]
机构
[1] Qassim Univ, Coll Engn, Dept Civil Engn, Buraydah 51452, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Engn, Transportat & Traff Engn Dept, POB 1982, Dammam 31451, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
关键词
traffic safety; severity prediction; machine learning; SHapley Additive exPlanations; SHAP; XGBoost; random forest; regression analysis; INJURY SEVERITY; TRAFFIC ACCIDENTS; IDENTIFICATION;
D O I
10.3390/app13010233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kingdom of Among the G20 countries, Saudi Arabia (KSA) is facing alarming traffic safety issues compared to other G-20 countries. Mitigating the burden of traffic accidents has been identified as a primary focus as part of vision 20230 goals. Driver distraction is the primary cause of increased severity traffic accidents in KSA. In this study, three different machine learning-based severity prediction models were developed and implemented for accident data from the Qassim Province, KSA. Traffic accident data for January 2017 to December 2019 assessment period were obtained from the Ministry of Transport and Logistics Services. Three classifiers, two of which are ensemble machine learning methods, namely random forest, XGBoost, and logistic regression, were used for crash injury severity classification. A resampling technique was used to deal with the problem of bias due to data imbalance issue. SHapley Additive exPlanations (SHAP) analysis interpreted and ranked the factors contributing to crash injury. Two forms of modeling were adopted: multi and binary classification. Among the three models, XGBoost achieved the highest classification accuracy (71%), precision (70%), recall (71%), F1-scores (70%), and area curve (AUC) (0.87) of receiver operating characteristic (ROC) curve when used for multi-category classifications. While adopting the target as a binary classification, XGBoost again outperformed the other classifiers with an accuracy of 94% and an AUC of 0.98. The SHAP results from both global and local interpretations illustrated that the accidents classified under property damage only were primarily categorized by their consequences and the number of vehicles involved. The type of road and lighting conditions were among the other influential factors affecting injury s severity outcome. The death class was classified with respect to temporal parameters, including month and day of the week, as well as road type. Assessing the factors associated with the severe injuries caused by road traffic accidents will assist policymakers in developing safety mitigation strategies in the Qassim Region and other regions of Saudi Arabia.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Photovoltaic Energy Prediction Using Machine Learning Techniques
    Surribas Sayago, Gonzalo
    David Fernandez-Rodriguez, Jose
    Dominguez, Enrique
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 577 - 587
  • [42] Airfare Prices Prediction Using Machine Learning Techniques
    Tziridis, K.
    Kalampokas, Th.
    Papakostas, G. A.
    Diamantaras, K. I.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1036 - 1039
  • [43] Prediction of diabetic retinopathy using machine learning techniques
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Alelyani, Salem
    Alsaqer, Mohammed Saleh
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 27 - 37
  • [44] Premature Birth Prediction Using Machine Learning Techniques
    Meem, Kazi Rafat Haa
    Islam, Sadia
    Adnan, Ahmed Omar Salim
    Momen, Sifat
    ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 270 - 284
  • [45] Prediction of Employee Performance using Machine Learning Techniques
    Lather, Anu Singh
    Malhotra, Ruchika
    Saloni, Priya
    Singh, Prabhjot
    Mittal, Sarthak
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [46] Diabetes prediction model using machine learning techniques
    Modak, Sandip Kumar Singh
    Jha, Vijay Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38523 - 38549
  • [47] Neonatal Disease Prediction Using Machine Learning Techniques
    Robi Y.G.
    Sitote T.M.
    Journal of Healthcare Engineering, 2023, 2023
  • [48] Earthquake Prediction using Hybrid Machine Learning Techniques
    Salam, Mustafa Abdul
    Ibrahim, Lobna
    Abdelminaam, Diaa Salama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 654 - 665
  • [49] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [50] Prediction of Movies popularity Using Machine Learning Techniques
    Latif, Muhammad Hassan
    Afzal, Hammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (08): : 127 - 131