Machine learning-based prediction models for home discharge in patients with COVID-19: Development and evaluation using electronic health records

被引:2
|
作者
Zapata, Ruben D. [1 ]
Huang, Shu [2 ]
Morris, Earl [2 ]
Wang, Chang [1 ]
Harle, Christopher [1 ,3 ]
Magoc, Tanja [3 ]
Mardini, Mamoun [1 ]
Loftus, Tyler [4 ]
Modave, Francois [1 ,5 ]
机构
[1] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL 32611 USA
[2] Univ Florida, Coll Pharm, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[3] Univ Florida, Clin & Translat Sci Inst, Gainesville, FL USA
[4] Univ Florida, Coll Med, Dept Surg, Gainesville, FL USA
[5] Univ Florida, Coll Med, Dept Anesthesiol, Gainesville, FL 32611 USA
来源
PLOS ONE | 2023年 / 18卷 / 10期
关键词
LOGISTIC-REGRESSION; DECISION TREES; NEURAL-NETWORK; FALL RISK;
D O I
10.1371/journal.pone.0292888
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ObjectiveThis study aimed to develop and validate predictive models using electronic health records (EHR) data to determine whether hospitalized COVID-19-positive patients would be admitted to alternative medical care or discharged home.MethodsWe conducted a retrospective cohort study using deidentified data from the University of Florida Health Integrated Data Repository. The study included 1,578 adult patients (>= 18 years) who tested positive for COVID-19 while hospitalized, comprising 960 (60.8%) female patients with a mean (SD) age of 51.86 (18.49) years and 618 (39.2%) male patients with a mean (SD) age of 54.35 (18.48) years. Machine learning (ML) model training involved cross-validation to assess their performance in predicting patient disposition.ResultsWe developed and validated six supervised ML-based prediction models (logistic regression, Gaussian Naive Bayes, k-nearest neighbors, decision trees, random forest, and support vector machine classifier) to predict patient discharge status. The models were evaluated based on the area under the receiver operating characteristic curve (ROC-AUC), precision, accuracy, F1 score, and Brier score. The random forest classifier exhibited the highest performance, achieving an accuracy of 0.84 and an AUC of 0.72. Logistic regression (accuracy: 0.85, AUC: 0.71), k-nearest neighbor (accuracy: 0.84, AUC: 0.63), decision tree (accuracy: 0.84, AUC: 0.61), Gaussian Naive Bayes (accuracy: 0.84, AUC: 0.66), and support vector machine classifier (accuracy: 0.84, AUC: 0.67) also demonstrated valuable predictive capabilities.SignificanceThis study's findings are crucial for efficiently allocating healthcare resources during pandemics like COVID-19. By harnessing ML techniques and EHR data, we can create predictive tools to identify patients at greater risk of severe symptoms based on their medical histories. The models developed here serve as a foundation for expanding the toolkit available to healthcare professionals and organizations. Additionally, explainable ML methods, such as Shapley Additive Explanations, aid in uncovering underlying data features that inform healthcare decision-making processes.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A machine learning-based prediction model for postoperative delirium in cardiac valve surgery using electronic health records
    Li Q.
    Li J.
    Chen J.
    Zhao X.
    Zhuang J.
    Zhong G.
    Song Y.
    Lei L.
    [J]. BMC Cardiovascular Disorders, 24 (1)
  • [22] Delirium Prediction using Machine Learning Models on Preoperative Electronic Health Records Data
    Davoudi, Anis
    Ebadi, Ashkan
    Rashidi, Parisa
    Ozrazgat-Baslanti, Tazcan
    Bihorac, Azra
    Bursian, Alberto C.
    [J]. 2017 IEEE 17TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2017, : 568 - 573
  • [23] Using Electronic Health Records to Accurately Predict COVID-19 Health Outcomes through a Novel Machine Learning Pipeline
    Feng, Alice
    [J]. 12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [24] Prediction of the COVID-19 pandemic with Machine Learning Models
    Sruthi, P. Lakshmi
    Raju, K. Butchi
    [J]. PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 474 - 481
  • [25] Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey
    Meraihi Y.
    Gabis A.B.
    Mirjalili S.
    Ramdane-Cherif A.
    Alsaadi F.E.
    [J]. SN Computer Science, 3 (4)
  • [26] Accurate COVID-19 Health Outcome Prediction and Risk Factors Identification through an Innovative Machine Learning Framework Using Longitudinal Electronic Health Records
    Feng, Alice
    [J]. 2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 519 - 526
  • [27] Early Mortality Risk Prediction in Covid-19 Patients Using an Ensemble of Machine Learning Models
    Walia, Harsh
    Jeevaraj, S.
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 965 - 970
  • [28] Machine Learning-Based Prediction of Atrial Fibrillation Risk Using Electronic Medical Records in Older Aged Patients
    Kao, Yung-Ta
    Huang, Chun-Yao
    Fang, Yu-Ann
    Liu, Ju -Chi
    Chang, Tzu-Hao
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2023, 198 : 56 - 63
  • [29] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    [J]. NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [30] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    [J]. Netherlands Heart Journal, 2022, 30 : 312 - 318