Quantum error correction scheme for fully-correlated noise

被引:1
|
作者
Li, Chi-Kwong [1 ]
Li, Yuqiao [1 ]
Pelejo, Diane Christine [1 ]
Stanish, Sage [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
关键词
Quantum error correction; IBM quantum; Qiskit; Quantum channels; Noise; Decoherence; DECOHERENCE;
D O I
10.1007/s11128-023-04009-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates quantum error correction schemes for fully-correlated noise channels on an n-qubit system, where error operators take the form W-?n, with W being an arbitrary 2 x 2 unitary operator. In previous literature, a recursive quantum error correction scheme can be used to protect k qubits using (k + 1)-qubit ancilla. We implement this scheme on 3-qubit and 5-qubit channels using the IBM quantum computers, where we uncover an error in the previous paper related to the decomposition of the encoding/decoding operator into elementary quantum gates. Here, we present a modified encoding/decoding operator that can be efficiently decomposed into (a) standard gates available in the qiskit library and (b) basic gates comprised of single-qubit gates and CNOT gates. Since IBM quantum computers perform relatively better with fewer basic gates, a more efficient decomposition gives more accurate results. Our experiments highlight the importance of an efficient decomposition for the encoding/decoding operators and demonstrate the effectiveness of our proposed schemes in correcting quantum errors. Furthermore, we explore a special type of channel with error operators of the form s (?n)( x), s(y)(?n) and s (?n)( z) , where s(x), s(y), s(z) are the Pauli matrices. For these channels, we implement a hybrid quantum error correction scheme that protects both quantum and classical information using IBM's quantum computers. We conduct experiments for n = 3, 4, 5 and show significant improvements compared to recent work.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Spatial noise filtering through error correction for quantum sensing
    Layden, David
    Cappellaro, Paola
    NPJ QUANTUM INFORMATION, 2018, 4
  • [42] Quantum Error Correction: Noise-Adapted Techniques and Applications
    Akshaya Jayashankar
    Prabha Mandayam
    Journal of the Indian Institute of Science, 2023, 103 : 497 - 512
  • [43] Quantum Error Correction: Noise-Adapted Techniques and Applications
    Jayashankar, Akshaya
    Mandayarm, Prabha
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2023, 103 (02) : 497 - 512
  • [44] Quantum Metrology Enhanced by Leveraging Informative Noise with Error Correction
    Chen, Hongzhen
    Chen, Yu
    Liu, Jing
    Miao, Zibo
    Yuan, Haidong
    PHYSICAL REVIEW LETTERS, 2024, 133 (19)
  • [45] Spatial noise filtering through error correction for quantum sensing
    David Layden
    Paola Cappellaro
    npj Quantum Information, 4
  • [46] RECOVERY IN QUANTUM ERROR CORRECTION FOR GENERAL NOISE WITHOUT MEASUREMENT
    Li, Chi-Kwong
    Nakahara, Mikio
    Poon, Yiu-Tung
    Sze, Nung-Sing
    Tomita, Hiroyuki
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (1-2) : 149 - 158
  • [47] Noise-adapted recovery circuits for quantum error correction
    Biswas, Debjyoti
    Vaidya, Gaurav M.
    Mandayam, Prabha
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [48] Removing leakage-induced correlated errors in superconducting quantum error correction
    McEwen, M.
    Kafri, D.
    Chen, Z.
    Atalaya, J.
    Satzinger, K. J.
    Quintana, C.
    Klimov, P., V
    Sank, D.
    Gidney, C.
    Fowler, A. G.
    Arute, F.
    Arya, K.
    Buckley, B.
    Burkett, B.
    Bushnell, N.
    Chiaro, B.
    Collins, R.
    Demura, S.
    Dunsworth, A.
    Erickson, C.
    Foxen, B.
    Giustina, M.
    Huang, T.
    Hong, S.
    Jeffrey, E.
    Kim, S.
    Kechedzhi, K.
    Kostritsa, F.
    Laptev, P.
    Megrant, A.
    Mi, X.
    Mutus, J.
    Naaman, O.
    Neeley, M.
    Neill, C.
    Niu, M.
    Paler, A.
    Redd, N.
    Roushan, P.
    White, T. C.
    Yao, J.
    Yeh, P.
    Zalcman, A.
    Chen, Yu
    Smelyanskiy, N.
    Martinis, John M.
    Neven, H.
    Kelly, J.
    Korotkov, A. N.
    Petukhov, A. G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [49] Removing leakage-induced correlated errors in superconducting quantum error correction
    M. McEwen
    D. Kafri
    Z. Chen
    J. Atalaya
    K. J. Satzinger
    C. Quintana
    P. V. Klimov
    D. Sank
    C. Gidney
    A. G. Fowler
    F. Arute
    K. Arya
    B. Buckley
    B. Burkett
    N. Bushnell
    B. Chiaro
    R. Collins
    S. Demura
    A. Dunsworth
    C. Erickson
    B. Foxen
    M. Giustina
    T. Huang
    S. Hong
    E. Jeffrey
    S. Kim
    K. Kechedzhi
    F. Kostritsa
    P. Laptev
    A. Megrant
    X. Mi
    J. Mutus
    O. Naaman
    M. Neeley
    C. Neill
    M. Niu
    A. Paler
    N. Redd
    P. Roushan
    T. C. White
    J. Yao
    P. Yeh
    A. Zalcman
    Yu Chen
    V. N. Smelyanskiy
    John M. Martinis
    H. Neven
    J. Kelly
    A. N. Korotkov
    A. G. Petukhov
    Nature Communications, 12
  • [50] Leakage mitigation for quantum error correction using a mixed qubit scheme
    Brown, Natalie C.
    Brown, Kenneth R.
    PHYSICAL REVIEW A, 2019, 100 (03)