Probabilistic multi-modal expected trajectory prediction based on LSTM for autonomous driving

被引:6
|
作者
Gao, Zhenhai [1 ]
Bao, Mingxi [1 ]
Gao, Fei [1 ,2 ]
Tang, Minghong [1 ]
机构
[1] Jilin Univ, Sch Vehicle Engn, State Key Lab Automot Simulat & Control, Changchun, Peoples R China
[2] Jilin Univ, Sch Vehicle Engn, State Key Lab Automot Simulat & Control, 5988 Renmin Rd, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory prediction; behavioral intent recognition; LSTM; interactive behavior; MODEL;
D O I
10.1177/09544070231167906
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Autonomous vehicles (AVs) need to adequately predict the trajectory space of surrounding vehicles (SVs) in order to make reasonable decision-making and improve driving safety. In this paper, we build the driving behavior intention recognition module and traffic vehicle expected trajectory prediction module by deep learning. On the one hand, the driving behavior intention recognition module identifies the probabilities of lane keeping, left lane changing, right lane changing, left acceleration lane changing, and right acceleration lane changing of the predicted vehicle. On the other hand, the expected trajectory prediction module adopts an encoder-decoder architecture, in which the encoder encodes the historical environment information of the surrounding agents as a context vector, and the decoder and MDN network combine the context vector and the identified driving behavior intention to predict the probability distribution of future trajectories. Additionally, our model produces the multiple behaviors and trajectories that may occur in the next 6 s for the predicted vehicle (PV). The proposed model is trained, validated and tested with the HighD dataset. The experimental results show that the constructed probabilistic multi-modal expected trajectory prediction possesses high accuracy in the intention recognition module with full consideration of interactive information. At the same time, the multi-modal probability distribution generated by the anticipated trajectory prediction model is more consistent with the real trajectories, which significantly improves the trajectory prediction accuracy compared with other approaches and has apparent advantages in predicting long-term domain trajectories.
引用
收藏
页码:2817 / 2828
页数:12
相关论文
共 50 条
  • [31] Multi-modal policy fusion for end-to-end autonomous driving
    Huang, Zhenbo
    Sun, Shiliang
    Zhao, Jing
    Mao, Liang
    INFORMATION FUSION, 2023, 98
  • [32] Leveraging Uncertainties for Deep Multi-modal Object Detection in Autonomous Driving
    Feng, Di
    Cao, Yifan
    Rosenbaum, Lars
    Timm, Fabian
    Dietmayer, Klaus
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 871 - 878
  • [33] Multi-scale multi-modal fusion for object detection in autonomous driving based on selective kernel
    Gao, Xin
    Zhang, Guoying
    Xiong, Yijin
    MEASUREMENT, 2022, 194
  • [34] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
    Prakash, Aditya
    Chitta, Kashyap
    Geiger, Andreas
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7073 - 7083
  • [35] Hilbert Space Embedding-based Trajectory Optimization for Multi-Modal Uncertain Obstacle Trajectory Prediction
    Sharma, Basant
    Sharma, Aditya
    Krishna, K. Madhava
    Singh, Arun Kumar
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7448 - 7455
  • [36] Multi-modal LSTM network for anomaly prediction in piston engine aircraft
    Khattak, Waqas Rauf
    Salman, Ahmad
    Ghafoor, Salman
    Latif, Seemab
    HELIYON, 2024, 10 (03)
  • [37] Anchor-based Multi-modal Transformer Network for Pedestrian Trajectory and Intention Prediction
    Lin, Yiwei
    Hu, Chuan
    Zhao, Baixuan
    Jiang, Hao
    Shan, Yonghang
    Ding, Taojun
    Zhang, Xi
    Proceedings of the 2023 7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023, 2023,
  • [38] Adversarial Cross-modal Domain Adaptation for Multi-modal Semantic Segmentation in Autonomous Driving
    Shi, Mengqi
    Cao, Haozhi
    Xie, Lihua
    Yang, Jianfei
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 850 - 855
  • [39] Interactive trajectory prediction for autonomous driving based on Transformer
    Xu, Rui
    Li, Jun
    Zhang, Shiyi
    Li, Lei
    Li, Hulin
    Ren, Guiying
    Tang, Xinglong
    MECHANICAL SCIENCES, 2025, 16 (01) : 87 - 97
  • [40] Trajectory-Based Failure Prediction for Autonomous Driving
    Kuhn, Christopher B.
    Hofbauer, Markus
    Petrovic, Goran
    Steinbach, Eckehard
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 980 - 986