Machine Learning Identification of Organic Compounds Using Visible Light

被引:0
|
作者
Bikku, Thulasi [1 ,2 ]
Fritz, Ruben A. [1 ]
Colon, Yamil J. [3 ]
Herrera, Felipe [1 ,4 ]
机构
[1] Univ Santiago Chile, Dept Phys, Santiago 3493, Chile
[2] Vignans Nirula Inst Technol & Sci Women, Comp Sci & Engn, Guntur 522009, Andhra Pradesh, India
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[4] Millennium Inst Res Opt, Conception 4070386, Chile
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2023年 / 127卷 / 10期
关键词
RAMAN-SPECTROSCOPY; REFRACTIVE-INDEX; POLYMERS; PREDICTION; SWEETNESS; QSPR;
D O I
10.1021/acs.jpca.2c07955
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Identifying chemical compounds is essential in several areas of science and engineering. Laser-based techniques are promising for autonomous compound detection because the optical response of materials encodes enough electronic and vibrational information for remote chemical identification. This has been exploited using the fingerprint region of infrared absorption spectra, which involves a dense set of absorption peaks that are unique to individual molecules, thus facilitating chemical identification. However, optical identification using visible light has not been realized. Using decades of experimental refractive index data in the scientific literature of pure organic compounds and polymers over a broad range of frequencies from the ultraviolet to the far-infrared, we develop a machine learning classifier that can accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols and applications.
引用
收藏
页码:2407 / 2414
页数:8
相关论文
共 50 条
  • [31] Identification of chimera using machine learning
    Ganaie, M. A.
    Ghosh, Saptarshi
    Mendola, Naveen
    Tanveer, M.
    Jalan, Sarika
    [J]. CHAOS, 2020, 30 (06)
  • [32] Recent advances of visible-light photocatalysis in the functionalization of organic compounds
    Srivastava, Vishal
    Singh, Pravin K.
    Singh, Praveen P.
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2022, 50
  • [34] Nanoscale light element identification using machine learning aided STEM-EDS
    Kim, Hong-Kyu
    Ha, Heon-Young
    Bae, Jee-Hwan
    Cho, Min Kyung
    Kim, Juyoung
    Han, Jeongwoo
    Suh, Jin-Yoo
    Kim, Gyeung-Ho
    Lee, Tae-Ho
    Jang, Jae Hoon
    Chun, Dongwon
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [35] Nanoscale light element identification using machine learning aided STEM-EDS
    Hong-Kyu Kim
    Heon-Young Ha
    Jee-Hwan Bae
    Min Kyung Cho
    Juyoung Kim
    Jeongwoo Han
    Jin-Yoo Suh
    Gyeung-Ho Kim
    Tae-Ho Lee
    Jae Hoon Jang
    Dongwon Chun
    [J]. Scientific Reports, 10
  • [36] A Corona Recognition Method Based on Visible Light Color and Machine Learning
    Ye, Qizheng
    Ye, Pingxiao
    Guo, Ziqing
    Dong, Xuan
    Wang, Ming
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (01) : 31 - 35
  • [37] Machine Learning Assisted Visible Light Sensing of the Rotation of a Robotic Arm
    Madane, Kushal
    Weiss, Andreas Peter
    Schantl, Stefan
    Leitgeb, Erich
    Wenzl, Franz Peter
    [J]. IEEE ACCESS, 2021, 9 : 130721 - 130736
  • [38] Indoor localization based on visible light communication and machine learning algorithms
    Ghonim, Alzahraa M.
    Salama, Wessam M.
    Khalaf, Ashraf A. M.
    Shalaby, Hossam M. H.
    [J]. OPTO-ELECTRONICS REVIEW, 2022, 30 (02)
  • [39] A survey on machine learning algorithm applications in visible light communication systems
    Sliti, Maha
    Mrabet, Manel
    Garai, Mouna
    Ammar, Lassaad Ben
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (08)
  • [40] Machine Learning Based Channel Modeling for Vehicular Visible Light Communication
    Turan, Bugra
    Coleri, Sinem
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 9659 - 9672