Development and multi-center validation of machine learning model for early detection of fungal keratitis

被引:10
|
作者
Wei, Zhenyu [1 ]
Wang, Shigeng [2 ]
Wang, Zhiqun [1 ]
Zhang, Yang [1 ]
Chen, Kexin [1 ]
Gong, Lan [3 ]
Li, Guigang [4 ]
Zheng, Qinxiang [5 ]
Zhang, Qin [6 ]
He, Yan [7 ]
Zhang, Qi [8 ]
Chen, Di [9 ]
Cao, Kai [1 ]
Pang, Jinding [1 ]
Zhang, Zijun [1 ]
Wang, Leying [1 ]
Ou, Zhonghong [2 ]
Liang, Qingfeng [1 ]
机构
[1] Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing Tongren Eye Ctr,Beijing Key Lab Ophthalmol, Beijing 100005, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[3] Fudan Univ, Dept Ophthalmol, Eye & ENT Hosp, Shanghai 200031, Peoples R China
[4] Huazhong Univ Sci & Technol, Tongji Hosp, Dept Ophthalmol, Tongji Med Coll, Wuhan 430030, Peoples R China
[5] Eye Hosp, Wenzhou Med Coll, Wenzhou 325027, Peoples R China
[6] Peking Univ, Peoples Hosp, Dept Ophthalmol, Key Lab Vis Loss & Restorat,Minist Educ, Beijing 100044, Peoples R China
[7] Cent South Univ, Xiangya Hosp 2, Dept Ophthalmol, Changsha 410011, Hunan, Peoples R China
[8] Chongqing Med Univ, Dept Ophthalmol, Affiliated Hosp 1, Chongqing 400016, Peoples R China
[9] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Ophthalmol, Beijing 100730, Peoples R China
来源
EBIOMEDICINE | 2023年 / 88卷
关键词
Fungal keratitis; Diagnostic model; Slit-lamp microscopy; Machine learning; RISK-FACTORS; SUPPURATIVE KERATITIS; BACTERIAL KERATITIS; MICROBIAL KERATITIS; CLINICAL-FEATURES; ACANTHAMOEBA;
D O I
10.1016/j.ebiom.2023.104438
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Fungal keratitis (FK) is a leading cause of corneal blindness in developing countries due to poor clinical recognition and laboratory identification. Here, we aimed to identify the distinct clinical signature of FK and develop a diagnostic model to differentiate FK from other types of infectious keratitis.Methods We reviewed the electronic health records (EHRs) of all patients with suspected infectious keratitis in Beijing Tongren Hospital from January 2011 to December 2021. Twelve clinical signs of slit-lamp images were assessed by Lasso regression analysis and collinear variables were excluded. Three models based on binary logistic regression, random forest classification, and decision tree classification were trained for FK diagnosis and employed for internal validation. Independent external validation of the models was performed in a cohort of 420 patients from seven different ophthalmic centers to evaluate the accuracy, specificity, and sensitivity in real world.Findings Three diagnostic models of FK based on binary logistic regression, random forest classification, and decision tree classification were established and internal validation were achieved with the mean AUC of 0.916, 0.920, and 0.859, respectively. The models were well-calibrated by external validation using a prospective cohort including 210 FK and 210 non-FK patients from seven eye centers across China. The diagnostic model with the binary logistic regression algorithm classified the external validation dataset with a sensitivity of 0.907 (0.774, 1.000), specificity 0.899 (0.750, 1.000), accuracy 0.905 (0.805, 1.000), and AUC 0.903 (0.808, 0.998).Interpretation Our model enables rapid identification of FK, which will help ophthalmologists to establish a preliminary diagnosis and to improve the diagnostic accuracy in clinic. Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine Learning-Based Objective Evaluation Model of CTPA Image Quality: A Multi-Center Study
    Sun, Qihang
    Liu, Zhongxiao
    Ding, Tao
    Shi, Changzhou
    Hou, Nailong
    Sun, Cunjie
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2025, 18 : 997 - 1005
  • [22] A PROSPECTIVE MULTI-CENTER VALIDATION STUDY FOR AUTOMATED POLYP DETECTION AS A SECOND OBSERVER
    Eelbode, Tom
    Hassan, Cesare
    Neumann, Helmut
    Demedts, Ingrid
    Sinonquel, Pieter
    Roelandt, Philip
    Camps, Chelsea
    Coron, Emmanuel
    Bhandari, Pradeep
    Pech, Oliver
    Willekens, Hilde
    Maes, Frederik
    Bisschops, Raf
    GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) : AB72 - AB72
  • [23] Machine learning approach to differentiation of peripheral schwannomas and neurofibromas: A multi-center study
    Zhang, Michael
    Tong, Elizabeth
    Wong, Sam
    Hamrick, Forrest
    Mohammadzadeh, Maryam
    Rao, Vaishnavi
    Pendleton, Courtney
    Smith, Brandon W.
    Hug, Nicholas F.
    Biswal, Sandip
    Seekins, Jayne
    Napel, Sandy
    Spinner, Robert J.
    Mahan, Mark A.
    Yeom, Kristen W.
    Wilson, Thomas J.
    NEURO-ONCOLOGY, 2022, 24 (04) : 601 - 609
  • [24] A machine learning algorithm for electrocardiographic fQRS quantification validated on multi-center data
    Amalia Villa
    Bert Vandenberk
    Tuomas Kenttä
    Sebastian Ingelaere
    Heikki V Huikuri
    Markus Zabel
    Tim Friede
    Christian Sticherling
    Anton Tuinenburg
    Marek Malik
    Sabine Van Huffel
    Rik Willems
    Carolina Varon
    Scientific Reports, 12
  • [25] A machine learning algorithm for electrocardiographic fQRS quantification validated on multi-center data
    Villa, Amalia
    Vandenberk, Bert
    Kentta, Tuomas
    Ingelaere, Sebastian
    Huikuri, Heikki, V
    Zabel, Markus
    Friede, Tim
    Sticherling, Christian
    Tuinenburg, Anton
    Malik, Marek
    Van Huffel, Sabine
    Willems, Rik
    Varon, Carolina
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [26] Development and Validation of the Assessment Tool for the Education of Laparoscopic Gastrectomy: A Multi-Center Study
    Kurashima, Yo
    Kitagami, Hidehiko
    Teramura, Koichi
    Watanabe, Yusuke
    Poudel, Saseem
    Ebihara, Yuma Y. E.
    Murakami, Soichi
    Shichinohe, Toshiaki
    Hirano, Satoshi
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2017, 225 (04) : E152 - E152
  • [27] Multi-center investigation of a detection model utilizing cfDNA for early-stage breast cancer screening
    Ni, C. L.
    Zhou, J.
    Zhu, Y.
    Sun, S.
    Liu, J.
    Ding, J.
    Gu, X.
    Zhou, J.
    Chen, J.
    Huang, J.
    Chen, Y.
    Gongsheng, J.
    Zhu, Q.
    Xue, W.
    Lin, Z.
    ANNALS OF ONCOLOGY, 2024, 35 : S337 - S337
  • [28] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Alaimo, Laura
    Lima, Henrique A.
    Moazzam, Zorays
    Endo, Yutaka
    Yang, Jason
    Ruzzenente, Andrea
    Guglielmi, Alfredo
    Aldrighetti, Luca
    Weiss, Matthew
    Bauer, Todd W. W.
    Alexandrescu, Sorin
    Poultsides, George A. A.
    Maithel, Shishir K. K.
    Marques, Hugo P. P.
    Martel, Guillaume
    Pulitano, Carlo
    Shen, Feng
    Cauchy, Francois
    Koerkamp, Bas Groot
    Endo, Itaru
    Kitago, Minoru
    Pawlik, Timothy M. M.
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) : 5406 - 5415
  • [29] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Laura Alaimo
    Henrique A. Lima
    Zorays Moazzam
    Yutaka Endo
    Jason Yang
    Andrea Ruzzenente
    Alfredo Guglielmi
    Luca Aldrighetti
    Matthew Weiss
    Todd W. Bauer
    Sorin Alexandrescu
    George A. Poultsides
    Shishir K. Maithel
    Hugo P. Marques
    Guillaume Martel
    Carlo Pulitano
    Feng Shen
    François Cauchy
    Bas Groot Koerkamp
    Itaru Endo
    Minoru Kitago
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2023, 30 : 5406 - 5415
  • [30] Optimizing oocyte yield utilizing a machine learning model for dose and trigger decisions, a multi-center, prospective study
    Canon, Chelsea
    Leibner, Lily
    Fanton, Michael
    Chang, Zeyu
    Suraj, Vaishali
    Lee, Joseph A.
    Loewke, Kevin
    Hoffman, David
    SCIENTIFIC REPORTS, 2024, 14 (01):