Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-air Batteries Derived from Ni-modified Prussian Blue

被引:0
|
作者
Wu, Haihua [1 ]
Zhai, Juanjuan [1 ]
Wu, Feng [1 ]
Wu, Jiahao [1 ]
Li, Yudan [1 ]
Xu, Xin [1 ]
Gao, Yunfang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
FeNi nanoalloy; Bifunctional electrocatalyst; Oxygen Reduction Reaction; Oxygen Evolution Reaction; Zn-air Battery; NANOTUBE-GRAFTED NITROGEN; CARBON; REDUCTION; NANOPARTICLES; EVOLUTION; CATALYSTS; RESILIENCE; IRON; FRAMEWORKS;
D O I
10.1002/cctc.202301195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rational design and exploration of efficient, low-cost and durable bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key to the development of rechargeable metal-air batteries. Here, we report a novel approach to in-situ synthesize Fe0.64Ni0.36 nanoalloy encapsulated in nitrogen-doped porous carbon nanotubes (FeNi@N-CNTs) as bifunctional electrocatalyst derived from Ni-modified Prussian blue, on which the ORR/OER can be promoted by the N-CNTs surface due to the electron modulation caused by electron transfer from the inner FeNi nanoalloy to the N-CNTs surface. The abundant wide-size range of mesopores in N-CNTs can offer rapid mass transport channels to facilitate the catalytic reactions. In addition, the encapsulation structure endows the outer N-CNTs acting as a "shield" to prevent the inner FeNi nanoalloy from corrosion in strong basic medium. Thanks to the synergistic effect between the N-CNTs and FeNi nanoalloy, the obtained FeNi@N-CNTs exhibits excellent bifunctional oxygen catalytic activity together with outstanding performance and cycling durability in rechargeable Zn-air battery. This work will open new avenues for the development of advanced bifunctional electrocatalysts for other metal-air batteries. Fe0.64Ni0.36 nanoalloy encapsulated in nitrogen-doped porous carbon nanotubes as bifunctional oxygen electrocatalyst for zinc-air batteries was obtained from Ni-modified Prussian blue. The electron transfer from inner nanoalloy to the N-CNT surface can modulate its electron state to boost ORR/OER catalysis. Meanwhile, the N-CNTs act as a "shield" to prevent the inner nanoalloy from corrosion in strong basic medium.image
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Framework-Porphyrin-Derived Single-Atom Bifunctional Oxygen Electrocatalysts and their Applications in Zn-Air Batteries
    Li, Bo-Quan
    Zhao, Chang-Xin
    Chen, Shuangming
    Liu, Jia-Ning
    Chen, Xiao
    Song, Li
    Zhang, Qiang
    ADVANCED MATERIALS, 2019, 31 (19)
  • [42] Sulfur-modulated FeNi nanoalloys as bifunctional oxygen electrode for efficient rechargeable aqueous Zn-air batteries
    Yu, Hailin
    Fan, Fei
    He, Chao
    Zhou, Mi
    Ma, Tian
    Wang, Yinghan
    Cheng, Chong
    SCIENCE CHINA-MATERIALS, 2022, 65 (11) : 3007 - 3016
  • [43] Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries
    Niu, Yanli
    Gong, Shuaiqi
    Liu, Xuan
    Xu, Chen
    Xu, Mingze
    Sun, Shi-Gang
    Chen, Zuofeng
    ESCIENCE, 2022, 2 (05): : 546 - 556
  • [44] Atomically Dispersed Fe-Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn-Air Batteries
    He, Yuting
    Yang, Xiaoxuan
    Li, Yunsong
    Liu, Liting
    Guo, Shengwu
    Shu, Chengyong
    Liu, Feng
    Liu, Yongning
    Tan, Qiang
    Wu, Gang
    ACS CATALYSIS, 2022, 12 (02) : 1216 - 1227
  • [45] NiFe Nanoparticle-Encapsulated Ultrahigh-Oxygen-Doped Carbon Layers as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries
    Liu, Mengxin
    Liu, Zedi
    Chen, Wenhao
    Liu, Zhen
    Li, Zhiyang
    Pi, Xinxin
    Du, Qiuju
    Lai, Xiaoyong
    Xia, Yanzhi
    Li, Yanhui
    INORGANIC CHEMISTRY, 2023, 62 (28) : 11199 - 11206
  • [46] Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal-organic frameworks for Zn-air batteries
    Meng, Zihan
    Chen, Neng
    Cai, Shichang
    Wang, Rui
    Wu, Jiawei
    Tang, Haolin
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (06) : 2649 - 2667
  • [47] La0.75Sr0.25MnO3-based perovskite oxides as efficient and durable bifunctional oxygen electrocatalysts in rechargeable Zn-air batteries
    Shui, Ziyi
    Tian, Huiying
    Yu, Sile
    Xiao, Hang
    Zhao, Wei
    Chen, Xi
    SCIENCE CHINA-MATERIALS, 2023, 66 (03) : 1002 - 1012
  • [48] Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries
    Yu, Neng-Fei
    Wu, Chang
    Huang, Wen
    Chen, You-Hu
    Ruan, Da-Qian
    Bao, Kai-Lin
    Chen, Hui
    Zhang, Yi
    Zhu, Yusong
    Huang, Qing-Hong
    Lai, Wei-Hong
    Wang, Yun-Xiao
    Liao, Hong-Gang
    Sun, Shi-Gang
    Wu, Yu-Ping
    Wang, Jiazhao
    NANO ENERGY, 2020, 77
  • [49] Densely colonized isolated Cu-N single sites for efficient bifunctional electrocatalysts and rechargeable advanced Zn-air batteries
    Wagh, Nayantara K.
    Shinde, Sambhaji S.
    Lee, Chi Ho
    Jung, Jin-Young
    Kim, Dong-Hyung
    Kim, Sung-Hae
    Lin, Chao
    Lee, Sang Uck
    Lee, Jung-Ho
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 268
  • [50] Uniform copper-cobalt phosphides embedded in N-doped carbon frameworks as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhang, Hang
    Yang, Zhao
    Wang, Xuemin
    Yan, Sihao
    Zhou, Tianyou
    Zhang, Cui
    Telfer, Shane G.
    Liu, Shuangxi
    NANOSCALE, 2019, 11 (37) : 17384 - 17395