SPECIAL MODULES FOR R(PSL(2, q))

被引:0
|
作者
Cao, Liufeng [1 ]
Chen, Huixiang [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, 88 South Daxue Rd, Yangzhou 225002, Jiangsu, Peoples R China
关键词
Frobenius-Perron theorem; special module; fusion ring;
D O I
10.21136/CMJ.2023.0002-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a fusion ring and R-C := R circle times C-Z be the corresponding fusion algebra. We first show that the algebra R(C )has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R(C )admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra R(PSL(2, q)):= r(PSL(2, q))circle times C-Z up to isomorphism, where r(PSL(2, q)) is the interpolated fusion ring with even q > 2.
引用
收藏
页码:1301 / 1317
页数:17
相关论文
共 50 条
  • [21] A characterization of PSL(3, q) for q=2m
    Iranmanesh, A
    Alavi, SH
    Khosravi, B
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (03) : 463 - 472
  • [22] A Characterization of PSL(2,q), q=5,7
    Tarnauceanu, Marius
    ALGEBRA COLLOQUIUM, 2019, 26 (04) : 561 - 564
  • [23] Maniplexes with automorphism group PSL(2, q)
    Leemans, Dimitri
    Toledo, Micael
    DISCRETE MATHEMATICS, 2023, 346 (09)
  • [24] The depth of subgroups of PSL(2, q) II
    Fritzsche, Tim
    JOURNAL OF ALGEBRA, 2013, 381 : 37 - 53
  • [25] A Characterization of PSL(3, q) for q=2m
    A. Iranmanesh
    S. H. Alavi
    B. Khosravi
    Acta Mathematica Sinica, 2002, 18 : 463 - 472
  • [26] A Characterization of PSL(3. q) for q=2~m
    A.IRANMANESH
    S.H.ALAVI
    B.KHOSRAVI
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 463 - 472
  • [27] Triangle groups and PSL2(q)
    Marion, Claude
    JOURNAL OF GROUP THEORY, 2009, 12 (05) : 689 - 708
  • [28] WRITING ELEMENTS OF PSL(2, q) AS COMMUTATORS
    McCullough, Darryl
    Wanderley, Marcus
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1234 - 1241
  • [29] A CHARACTERIZATION OF SIMPLE GROUPS PSL(2,Q)
    SUZUKI, M
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1968, 20 (1-2) : 342 - +
  • [30] On Beauville structures for PSL2(q)
    Garion, Shelly
    JOURNAL OF GROUP THEORY, 2015, 18 (06) : 981 - 1019