SPECIAL MODULES FOR R(PSL(2, q))

被引:0
|
作者
Cao, Liufeng [1 ]
Chen, Huixiang [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, 88 South Daxue Rd, Yangzhou 225002, Jiangsu, Peoples R China
关键词
Frobenius-Perron theorem; special module; fusion ring;
D O I
10.21136/CMJ.2023.0002-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a fusion ring and R-C := R circle times C-Z be the corresponding fusion algebra. We first show that the algebra R(C )has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R(C )admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra R(PSL(2, q)):= r(PSL(2, q))circle times C-Z up to isomorphism, where r(PSL(2, q)) is the interpolated fusion ring with even q > 2.
引用
收藏
页码:1301 / 1317
页数:17
相关论文
共 50 条
  • [1] Special modules for R(PSL(2, q))
    Liufeng Cao
    Huixiang Chen
    Czechoslovak Mathematical Journal, 2023, 73 : 1301 - 1317
  • [2] R-characters of PSL(2,q)
    Ghorbani, M.
    Iranmanesh, A.
    Tehranian, A.
    Ghasemabadi, M. Foroudi
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 : 71 - 87
  • [3] The limit set of subgroups of arithmetic groups in PSL(2, C)q x PSL(2, R)r
    Geninska, Slavyana
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (04) : 1047 - 1099
  • [4] Generalized quadrangles admitting PSL (2,q) x PSL (2,q)
    Thas, K
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (06) : 425 - 434
  • [5] Halving PSL(2, q)
    Bierbrauer J.
    Edel Y.
    Journal of Geometry, 1999, 64 (1-2) : 51 - 54
  • [6] Quadruple systems of the projective special linear group PSL(2,q), q ≡ 1 (mod 4)
    Keranen, MS
    Kreher, DL
    Shiue, PJS
    JOURNAL OF COMBINATORIAL DESIGNS, 2003, 11 (05) : 339 - 351
  • [7] ON SOME LAWS IN PSL(2,Q)
    NIKOLOVA, DB
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 204 : 245 - 245
  • [8] Constructive recognition of PSL(2, q)
    Conder, MDE
    Leedham-Green, CR
    O'Brien, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) : 1203 - 1221
  • [9] Coprime commutators in PSL(2, q)
    Pellegrini, Marco Antonio
    Shumyatsky, Pavel
    ARCHIV DER MATHEMATIK, 2012, 99 (06) : 501 - 507
  • [10] The depth of subgroups of PSL(2, q)
    Fritzsche, Tim
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 217 - 233