CNN Ensembles for Nuclei Segmentation on Histological Images of OED

被引:0
|
作者
Silva, Adriano B. [1 ]
Rozendo, Guilherme B. [2 ]
Tosta, Thaina A. A. [3 ]
Martins, Alessandro S. [4 ]
Loyola, Adriano M. [5 ]
Cardoso, Sergio V. [5 ]
Lumini, Alessandra [6 ]
Neves, Leandro A. [2 ]
de Faria, Paulo R. [7 ]
do Nascimemo, Marcelo Z. [1 ]
机构
[1] Univ Fed Uberlandia, Fac Comp Sci, Uberlandia, Brazil
[2] Sao Paulo State Univ, Dept Comp Sci & Stat DCCE, Sao Paulo, Brazil
[3] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Paulo, Brazil
[4] Fed Inst Triangulo Mineiro, Uberaba, Brazil
[5] Univ Fed Uberlandia, Sch Dent, Area Oral Pathol, Uberlandia, Brazil
[6] Univ Bologna, Dept Comp Sci & Engn DISH, Bologna, Italy
[7] Univ Fed Uberlandia, Inst Biomed Sci, Dept Histol & Morphol, Uberlandia, Brazil
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Oral Epihtelial Dysplasia; Nuclei Segmentation; Histological Image Processing; CNN Ensemble;
D O I
10.1109/CBMS58004.2023.00286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early diagnosis of potentially malignant disorders, such as oral epithelial dysplasia (OED), is the most reliable way to prevent oral cancer. Computational algorithms have been used as a tool to aid specialists in this process. In recent years, CNN-based methods have gained more attention due to their improved results in nuclei segmentation tasks. Despite these relevant results, achieving high segmentation accuracy remains a challenging task. In this paper, we propose an ensemble of segmentation models to improve the performance of nuclei segmentation in OED histopathology images. The proposed ensemble consists of four CNN segmentation models, which were combined using three ensemble strategies: simple averaging, weighted averaging and majority voting, achieved accuracy of 90.69%, 90.70% and 88.49%, respectively, when applied to OED images. The model's performance was also evaluated on three publicly available datasets and achieved comparable performance to state-of-the-art segmentation methods. These values indicate that the proposed ensemble methods can be used in medical image analysis applications.
引用
收藏
页码:601 / 604
页数:4
相关论文
共 50 条
  • [21] Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation
    Dolz, Jose
    Desrosiers, Christian
    Wang, Li
    Yuan, Jing
    Shen, Dinggang
    Ben Ayed, Ismail
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
  • [22] Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN
    Ramakrishnan, Vignesh
    Artinger, Annalena
    Barragan, Laura Alexandra Daza
    Daza, Jimmy
    Winter, Lina
    Niedermair, Tanja
    Itzel, Timo
    Arbelaez, Pablo
    Teufel, Andreas
    Cotarelo, Cristina L.
    Brochhausen, Christoph
    BIOENGINEERING-BASEL, 2024, 11 (10):
  • [23] Cell Nuclei Counting and Segmentation for Histological Image Analysis
    Lukashevich, Maryna
    Starovoitov, Valery
    PATTERN RECOGNITION AND INFORMATION PROCESSING, PRIP 2019, 2019, 1055 : 86 - 97
  • [24] Automatic Segmentation of Bone Canals in Histological Images
    Campos Cunha Gondim, Pedro Henrique
    Justino Oliveira Limirio, Pedro Henrique
    Rocha, Flaviana Soares
    Batista, Jonas Dantas
    Dechichi, Paula
    Nassif Travencolo, Bruno Augusto
    Backes, Andre Ricardo
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 678 - 690
  • [25] Automatic Segmentation of Bone Canals in Histological Images
    Pedro Henrique Campos Cunha Gondim
    Pedro Henrique Justino Oliveira Limirio
    Flaviana Soares Rocha
    Jonas Dantas Batista
    Paula Dechichi
    Bruno Augusto Nassif Travençolo
    André Ricardo Backes
    Journal of Digital Imaging, 2021, 34 : 678 - 690
  • [26] ROBUST CELL SEGMENTATION FOR HISTOLOGICAL IMAGES OF GLIOBLASTOMA
    Kong, Jun
    Zhang, Pengyue
    Liang, Yanhui
    Teodoro, George
    Brat, Daniel J.
    Wang, Fusheng
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1041 - 1045
  • [27] AUTOMATIC MUCOUS GLANDS SEGMENTATION IN HISTOLOGICAL IMAGES
    Khvostikov, A.
    Krylov, A.
    Mikhailov, I
    Kharlova, O.
    Oleynikova, N.
    Malkov, P.
    INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2019, 42-2 (W12): : 103 - 109
  • [28] Towards Generalized Nuclear Segmentation in Histological Images
    Vahadane, Abhishek
    Sethi, Amit
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [29] Automatic Segmentation of Histological Images of Mouse Brains
    Cisneros, Juan
    Lalande, Alain
    Yalcin, Binnaz
    Meriaudeau, Fabrice
    Collins, Stephan
    ALGORITHMS, 2023, 16 (12)
  • [30] Segmentation of Multiple Nuclei from Non-overlapping Immuno-histochemically Stained Histological Hepatic Images
    Kalinathan, Lekshmi
    Kathavarayan, Ruba Soundar
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 231 - 239