Understanding a novel form of intergranular corrosion of stainless steel 316L exposed to molten LiCl-Li2O-Li

被引:1
|
作者
Moon, Jeremy T. [1 ]
Phillips, William [3 ]
Chuirazzi, William [3 ]
Kane, Joshua [3 ]
Chidambaram, Dev [1 ,2 ,4 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, 1664 N Virginia St, Reno, NV 89557 USA
[2] Univ Nevada, Nevada Inst Sustainabil, 1664 N Virginia St, Reno, NV 89557 USA
[3] Idaho Natl Lab, 1955 N Freemont Ave, Idaho Falls, ID 83415 USA
[4] 1664 N Virginia St MS0388, Reno, NV 89557 USA
基金
美国能源部;
关键词
Molten salts (A); Stainless steel (A); SEM (B); De-alloying (C); High temperature corrosion (C); Intergranular corrosion (C); ELECTROCHEMICAL REDUCTION; METALLIC LITHIUM; ELECTRODEPOSITION; PRECIPITATION; SALTS; LI;
D O I
10.1016/j.corsci.2024.111836
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stainless steel 316 L exposed to LiCl-Li2O molten salt containing Li metal for 500 and 1000 h experiences deep intergranular attack and bulk void formation. This degradation is due to a synergistic corrosion mechanism, different than other forms of molten salt corrosion, where Cr and Mn oxides and carbides form along grain boundaries and are dissolved by Li metal. Synchrotron transmission X-ray microscopy 3D imaging is used to show corrosion morphology and Cr enrichment and depletion in a novel format that has not previously been used for bulk corrosion samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel
    Lee, J. H.
    Kim, K. T.
    Pyoun, Y. S.
    Kim, Y. S.
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2016, 15 (05): : 226 - 236
  • [32] Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel
    Li, Shu-Xin
    He, Yan-Ni
    Yu, Shu-Rong
    Zhang, Peng-Yi
    CORROSION SCIENCE, 2013, 66 : 211 - 216
  • [33] Precipitation formation on Σ5 and Σ7 grain boundaries in 316L stainless steel and their roles on intergranular corrosion
    Tsai, Shao-Pu
    Makineni, Surendra Kumar
    Gault, Baptiste
    Kawano-Miyata, Kaori
    Taniyama, Akira
    Zaefferer, Stefan
    ACTA MATERIALIA, 2021, 210
  • [34] Corrosion of 316L & 316H stainless steel in molten LiF-NaF-KF (FLiNaK)
    Doniger, William
    Falconer, Cody
    Couet, Adrien
    Sridharan, Kumar
    JOURNAL OF NUCLEAR MATERIALS, 2023, 579
  • [35] Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel
    Aydogdu, G. H.
    Aydinol, M. K.
    CORROSION SCIENCE, 2006, 48 (11) : 3565 - 3583
  • [36] Investigation of intergranular corrosion of 316L stainless steel diffusion bonded joint by electrochemical potentiokinetic reactivation
    Li, Shu-Xin
    Li, Lei
    Yu, Shu-Rong
    Akid, R.
    Xia, Hong-Bo
    CORROSION SCIENCE, 2011, 53 (01) : 99 - 104
  • [37] On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting
    Laleh, Majid
    Hughes, Anthony E.
    Xu, Wei
    Haghdadi, Nima
    Wang, Ke
    Cizek, Pavel
    Gibson, Ian
    Tan, Mike Yongjun
    CORROSION SCIENCE, 2019, 161
  • [38] A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water
    Guo, Xianglong
    Chen, Kai
    Gao, Wenhua
    Shen, Zhao
    Lai, Ping
    Zhang, Lefu
    CORROSION SCIENCE, 2017, 127 : 157 - 167
  • [39] Effect of SO42- on the corrosion of 316L stainless steel in molten FLiNaK salt
    Qiu, Jie
    Leng, Bin
    Liu, Huajian
    Macdonald, Digby D.
    Wu, Angjian
    Jia, Yanyan
    Xue, Wandong
    Yu, Guojun
    Zhou, Xingtai
    CORROSION SCIENCE, 2018, 144 : 224 - 229
  • [40] The role of alkaline-earth additives on the molten carbonate corrosion of 316L stainless steel
    Frangini, S.
    Loreti, S.
    CORROSION SCIENCE, 2007, 49 (10) : 3969 - 3987