Sign Language Motion Generation from Sign Characteristics

被引:0
|
作者
Gil-Martin, Manuel [1 ]
Villa-Monedero, Maria [1 ]
Pomirski, Andrzej [2 ]
Saez-Trigueros, Daniel [3 ]
San-Segundo, Ruben [1 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Telecomunicac, Informat Proc & Telecommun Ctr, Grp Tecnol Habla & Aprendizaje Automatico, Madrid 28040, Spain
[2] Alexa, Aleja Grunwaldzka 472, PL-80309 Gdansk, Poland
[3] Alexa, C Ramirez Prado 5, Madrid 28045, Spain
关键词
motion generation; motion dataset; sign language; sign phonemes; HamNoSys; landmarks extraction; interpolation; padding strategies;
D O I
10.3390/s23239365
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes, analyzes, and evaluates a deep learning architecture based on transformers for generating sign language motion from sign phonemes (represented using HamNoSys: a notation system developed at the University of Hamburg). The sign phonemes provide information about sign characteristics like hand configuration, localization, or movements. The use of sign phonemes is crucial for generating sign motion with a high level of details (including finger extensions and flexions). The transformer-based approach also includes a stop detection module for predicting the end of the generation process. Both aspects, motion generation and stop detection, are evaluated in detail. For motion generation, the dynamic time warping distance is used to compute the similarity between two landmarks sequences (ground truth and generated). The stop detection module is evaluated considering detection accuracy and ROC (receiver operating characteristic) curves. The paper proposes and evaluates several strategies to obtain the system configuration with the best performance. These strategies include different padding strategies, interpolation approaches, and data augmentation techniques. The best configuration of a fully automatic system obtains an average DTW distance per frame of 0.1057 and an area under the ROC curve (AUC) higher than 0.94.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Sign Language Dataset for Automatic Motion Generation
    Villa-Monedero, Maria
    Gil-Martin, Manuel
    Saez-Trigueros, Daniel
    Pomirski, Andrzej
    San-Segundo, Ruben
    [J]. JOURNAL OF IMAGING, 2023, 9 (12)
  • [2] Spoken Spanish generation from sign language
    San-Segundo, R.
    Pardo, J. M.
    Ferreiros, J.
    Sama, V.
    Barra-Chicote, R.
    Lucas, J. M.
    Sanchez, D.
    Garcia, A.
    [J]. INTERACTING WITH COMPUTERS, 2010, 22 (02) : 123 - 139
  • [3] Sign Language Generation System Based on Indian Sign Language Grammar
    Sugandhi
    Kumar, Parteek
    Kaur, Sanmeet
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (04)
  • [4] RECOGNITION OF SIGN LANGUAGE MOTION IMAGES
    TAMURA, S
    KAWASAKI, S
    [J]. PATTERN RECOGNITION, 1988, 21 (04) : 343 - 353
  • [5] From Gesture to Sign: Sign Language Dictionaries and the Invention of a Language
    Arnaud, Sabine
    [J]. SIGN LANGUAGE STUDIES, 2019, 20 (01) : 41 - 82
  • [6] Sign Motion Generation by Motion Diffusion Model
    Hakozaki, Kohei
    Murakami, Tomoya
    Uchida, Tsubasa
    Miyazaki, Taro
    Kaneko, Hiroyuki
    [J]. PROCEEDINGS OF THE SIGGRAPH 2024 POSTERS, 2024,
  • [7] Sign language images dataset from Mexican sign language
    Espejel, Josue
    Jalili, Laura D.
    Cervantes, Jair
    Canales, Jared Cervantes
    [J]. DATA IN BRIEF, 2024, 55
  • [8] Information structure in sign languages: Evidence from Russian Sign Language and Sign Language of Netherlands
    Nuhbalaoglu, Derya
    [J]. SIGN LANGUAGE & LINGUISTICS, 2020, 23 (1-2) : 280 - 285
  • [9] HamNoSys Generation System for Sign Language
    Kaur, Rupinder
    Kumar, Parteek
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 2727 - 2734
  • [10] Indian Sign Language Generation System
    Sugandhi
    Kumar, Parteek
    Kaur, Sanmeet
    [J]. COMPUTER, 2021, 54 (03) : 37 - 46