Existence of unattainable states for Schrödinger type flows on the half-line

被引:1
|
作者
Ozsari, Turker [1 ]
Kalimeris, Konstantinos [2 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Acad Athens, Math Res Ctr, Soranou Efesiou 4, Athens 11527, Greece
关键词
Fokas method; Schrodinger equation; biharmonic Schrodinger equation; controllability; NONLINEAR SCHRODINGER-EQUATION; EXACT BOUNDARY CONTROLLABILITY; STABILIZATION;
D O I
10.1093/imamci/dnad032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that the solutions of the Schrodinger and biharmonic Schrodinger equations do not have the exact boundary controllability property on the half-line by showing that the associated adjoint models lack observability. We consider the framework of $L<^>2$ boundary controls with data spaces $H<^>{-1}(\mathbb{R}_+)$ and $H<^>{-2}(\mathbb{R}_+)$ for the classical and biharmonic Schrodinger equations, respectively. The lack of controllability on the half-line contrasts with the corresponding dynamics on a finite interval for a similar regularity setting. Our proof is based on an argument that uses the sharp fractional time trace estimates for solutions of the adjoint models. We also make several remarks on the connection of controllability and temporal regularity of spatial traces.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 50 条
  • [41] Complex eigenvalue bounds for a Schrödinger operator on the half line
    Ferrulli F.
    Laptev A.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2020, 31 (01): : 1 - 13
  • [42] On the existence of solutions for a boundary value problem on the half-line
    Galewski, Marek
    Moussaoui, Toufik
    Soufi, Ibrahim
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (12) : 1 - 12
  • [43] Existence and multiplicity of positive bound states for Schrödinger equations
    Sun Sheng
    Fanglei Wang
    Tianqing An
    Boundary Value Problems, 2013
  • [44] Existence and uniqueness of positive solutions for BVP on the half-line
    Tian, Y.
    Ge, W.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (10) : 885 - 900
  • [45] Existence result for impulsive coupled systems on the half-line
    Minhos, Feliz
    de Sousa, Robert
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 917 - 930
  • [46] The existence problem for a nonlinear Abel equation on the half-line
    Mydlarczyk, W.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) : 2022 - 2026
  • [47] Existence result for impulsive coupled systems on the half-line
    Feliz Minhós
    Robert de Sousa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 917 - 930
  • [48] On the Existence and Uniqueness of Dirichlet Problems on a Positive Half-Line
    Beldzinski, Michal
    Galewski, Marek
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 55 - 69
  • [49] Half-line Schrodinger operators with no bound states
    Damanik, D
    Killip, R
    ACTA MATHEMATICA, 2004, 193 (01) : 31 - 72
  • [50] The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann–Hilbert approach
    Yan Li
    Ling Zhang
    Beibei Hu
    Ruiqi Wang
    Theoretical and Mathematical Physics, 2021, 209 : 1537 - 1551