Thermal Expansion Neutralization Enhancing the Cycling Stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode Material

被引:2
|
作者
Du, Kai [1 ,2 ]
Wu, Maokun [3 ]
Hu, Xinhong [1 ]
Wang, Wei-hua [3 ]
Pan, Du [1 ]
Wang, Zhenbo [1 ]
Yin, Yanfeng [1 ]
Zhao, Huiling [1 ,2 ]
Bai, Ying [1 ,2 ]
机构
[1] Henan Univ, Sch Phys & Elect, Int Joint Res Lab New Energy Mat & Devices Henan P, Kaifeng 475004, Peoples R China
[2] Henan Univ, Acad Adv Interdisciplinary Studies, Kaifeng 475004, Peoples R China
[3] Nankai Univ, Dept Elect Sci & Engn, Tianjin Key Lab Photoelect Thin Film Device & Tech, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries (LIBs); negative thermal expansion(NET); in situ XRD; surface engineering; Ni-rich cathode; electrochemical performance; SURFACE MODIFICATION; DOPING STRATEGY; HIGH-VOLTAGE; LICOO2;
D O I
10.1021/acsami.3c06932
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As promising cathode candidates with advantageous capacityandprice superiority for lithium-ion batteries, Ni-rich materials areseverely impeded in the practical application due to their poor microstructuralstability induced by the intrinsic Li+/Ni2+ cationmixing and mechanical stress accumulation upon cycling. In this work,a synergetic approach is demonstrated to improve the microstructuraland thermal stabilities of Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode material through takingadvantage of the thermal expansion offset effect of the LiZr2(PO4)(3) (LZPO) modification layer. The optimizedNCM622@LZPO cathode exhibits a significantly enhanced cyclabilitywith a capacity retention of 67.7% after 500 cycles at 0.2 C and deliversa specific capacity of 115 mAh g(-1) with a capacityretention of 64.2% after 300 cycles under 55 & DEG;C. Exploiting thechemical environment analysis of the Ni element detected by the synchrotronradiation technique, it is found that the mixing degree of Li+/Ni2+ cations in the bulk Ni-rich material canbe effectively depressed through interfacial Zr4+ dopingduring the preparation of the LZPO-modified material. Additionally,time- and temperature-dependent powder diffraction spectra were collectedto monitor the structure evolutions of pristine NCM622 and NCM622@LZPOcathodes in the initial cycles and under various temperatures, revealingthe contribution of negative thermal expansion LZPO coating in promotingmicrostructural stability of the bulk NCM622 cathode. The introductionof NTE functional compounds might provide a universal strategy toaddress the stress accumulation and volume expansion issues of variouscathode materials for advanced secondary-ion batteries.
引用
收藏
页码:33703 / 33711
页数:9
相关论文
共 50 条
  • [21] Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 Porous Microspheres: Facile Designed Synthesis and Their Improved Electrochemical Performance
    Zheng, Zhuo
    Guo, Xiao-Dong
    Chou, Shu-Lei
    Hua, Wei-Bo
    Liu, Hua-Kun
    Dou, Shi Xue
    Yang, Xiu-Shan
    ELECTROCHIMICA ACTA, 2016, 191 : 401 - 410
  • [22] Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive
    Deng, Bangwei
    Wang, Hao
    Ge, Wujie
    Li, Xiang
    Yan, Xinxiu
    Chen, Tao
    Qu, Meizhen
    Peng, Gongchang
    ELECTROCHIMICA ACTA, 2017, 236 : 61 - 71
  • [23] Enhanced Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by a Negative-Thermal-Expansion Material at Elevated Temperature
    Xu, Sheng
    Jing, Nana
    Hao, Huming
    Wang, Mengyao
    Wang, Zhiqiang
    Yang, Liangxuan
    Wang, Guan
    Chen, Jianyue
    Wang, Guixin
    ENERGY TECHNOLOGY, 2021, 9 (08)
  • [24] Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating
    Cho, Woosuk
    Kim, Sang-Min
    Song, Jun Ho
    Yim, Taeeun
    Woo, Sang-Gil
    Lee, Ko-Woon
    Kim, Jeom-Soo
    Kim, Young-Jun
    JOURNAL OF POWER SOURCES, 2015, 282 : 45 - 50
  • [25] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Xin Tang
    Jing Li
    Min Zeng
    Yeju Huang
    Jianqiang Guo
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 848 - 856
  • [26] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Tang, Xin
    Li, Jing
    Zeng, Min
    Huang, Yeju
    Guo, Jianqiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (01) : 848 - 856
  • [27] Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Cao, H
    Zhang, Y
    Zhang, H
    Xia, BJ
    SOLID STATE IONICS, 2005, 176 (13-14) : 1207 - 1211
  • [28] CePO4 Coated LiNi0.6Co0.2Mn0.2O2 as Cathode Material and its Electrochemical Performance
    Diao, Ruijia
    Nayaka, G. P.
    Zhu, Chengyi
    Yu, Xiaohua
    Zhang, Yannan
    Rong, Ju
    Wang, Xiao
    Zhang, Yingjie
    Dong, Peng
    Zhang, Mingyu
    Yang, Xi
    Zhan, Zhaolin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 8070 - 8079
  • [29] The electrochemical performance of LiNi0.6Co0.2Mn0.2O2 material doped by Ti as cathode for lithium ion battery
    Zhang J.
    Guo X.-D.
    Wu Z.-G.
    Xiang W.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2020, 34 (04): : 1053 - 1059
  • [30] Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures
    Liu, Siyang
    Dang, Zhiyan
    Liu, Da
    Zhang, Congcong
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2018, 396 : 288 - 296