Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review

被引:49
|
作者
Cheng, Sibo [1 ,2 ]
Quilodran-Casas, Cesar [1 ,2 ]
Ouala, Said [4 ,5 ]
Farchi, Alban [7 ,8 ]
Liu, Che [1 ,2 ]
Tandeo, Pierre [4 ,5 ,6 ]
Fablet, Ronan [4 ,5 ]
Lucor, Didier [9 ]
Iooss, Bertrand [10 ,11 ,12 ]
Brajard, Julien [13 ,14 ]
Xiao, Dunhui [15 ]
Janjic, Tijana [16 ]
Ding, Weiping [17 ]
Guo, Yike [1 ,3 ]
Carrassi, Alberto [18 ]
Bocquet, Marc [7 ,8 ]
Arcucci, Rossella [1 ,2 ]
机构
[1] Imperial Coll London, Data Sci Inst, Dept Comp, London SW7 2AZ, England
[2] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
[4] IMT Atlantique, Lab STICC, UMR CNRS 6285, Nantes, France
[5] Inria IMT, Odyssey, Nantes, France
[6] RIKEN, Ctr Computat Sci, Kobe, Japan
[7] Ecole Ponts, CEREA, Ile De France, France
[8] EDF R&D, Ile De France, France
[9] Paris Saclay Univ, Lab Interdisciplinaire Sci Numer, CNRS, F-91403 Orsay, France
[10] Electr France EDF, F-78401 Chatou, France
[11] Inst Math Toulouse, F-31062 Toulouse, France
[12] SINCLAIR AI Lab, Saclay, France
[13] Sorbonne Univ, Paris, France
[14] Nansen Environm & Remote Sensing Ctr NERSC, Bergen, Norway
[15] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[16] KU Eichstaett Ingolstadt, Math Inst Machine Learning & Data Sci, Bavaria, Germany
[17] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[18] Univ Bologna, Dept Phys & Astron Augusto Righi, I-40124 Bologna, Italy
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Data assimilation (DA); deep learning; machine learning (ML); reduced-order-modelling; uncertainty quantification (UQ); ENSEMBLE KALMAN FILTER; PARAMETER-ESTIMATION; NEURAL-NETWORKS; SPARSE IDENTIFICATION; COVARIANCE ESTIMATION; POLYNOMIAL CHAOS; STATE ESTIMATION; ERROR; MODEL; SPACE;
D O I
10.1109/JAS.2023.123537
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical applications span from computational fluid dynamics (CFD) to geoscience and climate systems. Recently, much effort has been given in combining DA, UQ and machine learning (ML) techniques. These research efforts seek to address some critical challenges in high-dimensional dynamical systems, including but not limited to dynamical system identification, reduced order surro-gate modelling, error covariance specification and model error correction. A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains, resulting in the necessity for a comprehensive guide. This paper provides the first overview of state-of-the-art researches in this interdisciplinary field, covering a wide range of applications. This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models, but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems. Therefore, this article has a special focus on how ML methods can overcome the existing limits of DA and UQ, and vice versa. Some exciting perspectives of this rapidly developing research field are also discussed.
引用
收藏
页码:1361 / 1387
页数:27
相关论文
共 50 条
  • [31] Machine Learning for Targeted Assimilation of Satellite Data
    Lee, Yu-Ju
    Hall, David
    Stewart, Jebb
    Govett, Mark
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 53 - 68
  • [32] QUANTIFICATION MODEL UNCERTAINTY OF LABEL-FREE MACHINE LEARNING FOR MULTIDISCIPLINARY SYSTEMS ANALYSIS
    Li, Huiru
    Panchal, Jitesh H.
    Du, Xiaoping
    [J]. PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3B, 2023,
  • [33] System of systems uncertainty quantification using machine learning techniques with smart grid application
    Raz, Ali K.
    Wood, Paul C.
    Mockus, Linas
    DeLaurentis, Daniel A.
    [J]. SYSTEMS ENGINEERING, 2020, 23 (06) : 770 - 782
  • [34] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman, Hussein
    Shirmohammadi, Shervin
    [J]. IEEE Instrumentation and Measurement Magazine, 2021, 24 (03): : 23 - 27
  • [35] Machine learning the deuteron: new architectures and uncertainty quantification
    Sarmiento, J. Rozalen
    Keeble, J. W. T.
    Rios, A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [36] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman, Hussein
    Shirmohammadi, Shervin
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2021, 24 (03) : 23 - 27
  • [37] Evaluation of machine learning techniques for forecast uncertainty quantification
    Sacco, Maximiliano A.
    Ruiz, Juan J.
    Pulido, Manuel
    Tandeo, Pierre
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (749) : 3470 - 3490
  • [38] Uncertainty quantification of machine learning models: on conformal prediction
    Akpabio, Inimfon I.
    Savari, Serap A.
    [J]. JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2021, 20 (04):
  • [39] Efficient uncertainty quantification of dynamical systems with local nonlinearities and uncertainties
    Gaurav
    Wojtkiewicz, S. F.
    Johnson, E. A.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2011, 26 (04) : 561 - 569
  • [40] Decision Support Modeling: Data Assimilation, Uncertainty Quantification, and Strategic Abstraction
    Doherty, John
    Moore, Catherine
    [J]. GROUNDWATER, 2020, 58 (03) : 327 - 337