Piecewise integrable neural network: An interpretable chaos identification framework

被引:3
|
作者
Novelli, Nico [1 ]
Belardinelli, Pierpaolo [1 ]
Lenci, Stefano [1 ]
机构
[1] Polytech Univ Marche, Dept Construct Civil Engn & Architecture, I-60131 Ancona, Italy
关键词
OPTIMIZATION; SYSTEMS; MODELS;
D O I
10.1063/5.0134984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Artificial neural networks (ANNs) are an effective data-driven approach to model chaotic dynamics. Although ANNs are universal approximators that easily incorporate mathematical structure, physical information, and constraints, they are scarcely interpretable. Here, we develop a neural network framework in which the chaotic dynamics is reframed into piecewise models. The discontinuous formulation defines switching laws representative of the bifurcations mechanisms, recovering the system of differential equations and its primitive (or integral), which describe the chaotic regime.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Chaos and hyperchaos in a Hopfield neural network
    Rech, Paulo C.
    [J]. NEUROCOMPUTING, 2011, 74 (17) : 3361 - 3364
  • [32] Generalization and chaos in a layered neural network
    Dominguez, DRC
    Theumann, WK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05): : 1403 - 1414
  • [33] Spatiotemporal chaos control in neural network
    Cao, Zhitong
    Chen, Hongping
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2000, 13 (04): : 470 - 473
  • [34] Chaos in a three dimensional neural network
    Das, A
    Roy, AB
    Das, P
    [J]. APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) : 511 - 522
  • [35] Neural network design for chaos synchronization
    Sanchez, EN
    Perez, JP
    Ricalde, LJ
    [J]. CHAOS CONTROL: THEORY AND APPLICATIONS, 2003, 292 : 137 - 158
  • [36] Controlling chaos in a chaotic neural network
    He, GG
    Cao, ZT
    Zhu, P
    Ogura, H
    [J]. NEURAL NETWORKS, 2003, 16 (08) : 1195 - 1200
  • [37] Origin of Randomness on Chaos Neural Network
    Yoshida, Hitoaki
    Murakami, Takeshi
    Inao, Taiki
    Kawamura, Satoshi
    [J]. TRENDS IN APPLIED KNOWLEDGE-BASED SYSTEMS AND DATA SCIENCE, 2016, 9799 : 587 - 598
  • [38] A CHAOS SYNERGETIC NEURAL-NETWORK
    NAKAGAWA, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (08) : 3112 - 3119
  • [39] Neural network complexity of chaos and turbulence
    Tim Whittaker
    Romuald A. Janik
    Yaron Oz
    [J]. The European Physical Journal E, 2023, 46
  • [40] Neural network system identification of chaotic optical systems with the chaos speedup, BP algorithm
    Weng, ZH
    Yang, HJ
    Shen, K
    Zhou, LW
    [J]. FUNCTIONAL PHOTONIC AND FIBER DEVICES, 1996, 2695 : 255 - 264