Dirac Operators with Exponentially Decaying Entropy

被引:0
|
作者
Gubkin, Pavel [1 ,2 ]
机构
[1] St Petersburg State Univ, Univ kaya Nab 7-9, St Petersburg 199034, Russia
[2] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
关键词
Krein system; Dirac operator; Entropy function; SCHRODINGER-OPERATORS; RESONANCES;
D O I
10.1007/s00365-024-09678-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Weyl function of the one-dimensional Dirac operator on the half-line R+ with exponentially decaying entropy extends meromorphically into the horizontal strip {0 >= Imz>-delta} for some delta>0 depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.
引用
收藏
页数:45
相关论文
共 50 条