Amino acid-assisted effect on hydrate-based CO2 storage in porous media with brine

被引:0
|
作者
Rehman, Amirun Nissa [1 ]
Bavoh, Cornelius Borecho [2 ]
Khan, Mohd Yusuf [1 ]
Lal, Bhajan [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Dhahran 31261, Saudi Arabia
[2] Univ Mines & Technol, Dept Chem & Petrochem Engn, POB 237, Tarkwa, Ghana
[3] Univ Teknol PETRONAS, Chem Engn Dept, Bandar SeriIskandar 32610, Perak Darul Rid, Malaysia
关键词
CARBON; SEQUESTRATION; INHIBITION;
D O I
10.1039/d4ra00330f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 storage as hydrates in porous media is a promising method for storing carbon dioxide (CO2). However, the sluggish formation kinetics of hydrates urge the need to focus on the use of additives (promoters) to accelerate hydrate kinetics. This study investigates the effect of amino acid solutions in brine on CO2 hydrate formation and dissociation kinetics in quartz sand particles QS-2 (0.6-0.8 mm) with 38% porosity. The amino acids L-methionine (L-meth), L-isoleucine (L-iso), and L-threonine (L-threo) were studied at 0.2 wt% using an autoclave hydrate reactor at 4 MPa and 274.15 K in the presence and absence of salt (3.3 wt% NaCl) in 100% water saturation. The hydrate dissociation kinetics was studied at a temperature of 277.15 K. These conditions represent the normal seabed temperature range in Malaysia and hence were used for testing CO2 hydrate formation and dissociation kinetics in quartz sand in this study. Further, CO2 hydrate formation and dissociation experiments were conducted with sodium dodecyl sulphate (SDS) and brine systems as standards for comparison. The findings reveal the best kinetics for L-meth exhibiting the highest CO2 hydrate storage capacity. L-meth recorded a gas-to-hydrate conversion ratio of about 93% at 0.2 wt% in quartz sand with brine. Moreover, L-meth exhibited the lowest hydrate dissociation rate compared to L-iso and L-threo systems, thereby enhancing CO2 hydrate stability in quartz sand. Comparatively, L-meth enhanced the storage capacity by 36% and reduced the induction time by more than 50% compared to conventional promoter SDS in quartz sand with brine, suggesting it to be favorable for CO2 storage applications. CO2 hydrate nucleation time was predicted in quartz sand with and without the best-studied amino acid L-meth system with high prediction accuracy and an absolute average deviation of 2.4 hours. The findings of this study substantiate the influence of amino acids in promoting the storage capacity of CO2 in sediments as hydrates.
引用
收藏
页码:9339 / 9350
页数:12
相关论文
共 50 条
  • [21] Effect of temperature fluctuation on hydrate-based CO2 separation from fuel gas
    Li, Xiaosen
    Xu, Chungang
    Chen, Zhaoyang
    Wu, Huijie
    Cai, Jing
    JOURNAL OF NATURAL GAS CHEMISTRY, 2011, 20 (06): : 647 - 653
  • [22] Conceptual Design and Analysis of a Novel CO2 Hydrate-Based Refrigeration System with Cold Energy Storage
    Xie, Nan
    Tan, Chenghua
    Yang, Sheng
    Liu, Zhiqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1502 - 1511
  • [23] CO2 capture by adsorption and hydrate-based separation: A technological review
    Thilagan J.
    Gayathri B.
    Sugumar M.
    International Journal of Environment and Waste Management, 2018, 22 (1-4): : 147 - 181
  • [24] Amino acid-assisted controlling the shapes of rutile, brookite for enhanced photocatalytic CO2 reduction
    Quang Duc Truong
    Thi Hang Le
    Huu Thu Hoa
    CRYSTENGCOMM, 2017, 19 (31): : 4519 - 4527
  • [25] CO2 nanobubbles as a novel kinetic promoter in hydrate-based desalination
    Montazeri, Seyed Mohammad
    Kalogerakis, Nicolas
    Kolliopoulos, Georgios
    DESALINATION, 2024, 574
  • [26] A Comparative Study of Hydrate-Based CO2 Sequestration at Different Scales
    Pang, Weixin
    Chen, Mingqiang
    Fu, Qiang
    Ge, Yang
    Zhang, Xiaohan
    Wen, Huiyun
    Zhou, Shouwei
    Li, Qingping
    ENERGY & FUELS, 2024, 38 (17) : 16599 - 16609
  • [27] The effect of additive molecular diameters on the hydrate-based CO2 capture from simulated biogas
    Bai, Jing
    Zhen, Xiang
    Yan, Kele
    Li, Pan
    Fang, Shuqi
    Chang, Chun
    FUEL, 2020, 278 (278)
  • [28] Formation and storage characteristics of CO2 hydrate in porous media: Effect of liquefaction amount on the formation rate, accumulation amount
    Zhang, Xuemin
    Wang, Jiaxian
    Yang, Huijie
    Li, Jinping
    Li, Yinhui
    Wu, Qingbai
    APPLIED THERMAL ENGINEERING, 2022, 214
  • [29] Experimental Studies on Gas Hydrate-Based CO2 Storage: State-of-the-Art and Future Research Directions
    Wang, Pengfei
    Teng, Ying
    Zhao, Yusheng
    Zhu, Jinlong
    ENERGY TECHNOLOGY, 2021, 9 (07)
  • [30] Dependence of the hydrate-based CO2 storage characteristics on sand particle size and clay content in unconsolidated sediments
    Wang, Jiaxian
    Ji, Yunkai
    Liu, Changling
    Ning, Fulong
    Meng, Qingguo
    Zhao, Yapeng
    Li, Jing
    Zhang, Zhun
    Zhang, Yongchao
    Cai, Feng
    CHEMICAL ENGINEERING JOURNAL, 2024, 501