Estimating snow water equivalent using observed snow depth data in China

被引:0
|
作者
Yang, Zhiwei [1 ,2 ]
Chen, Rensheng [1 ]
Liu, Zhangwen [1 ]
Zhang, Wei [3 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Ecol Safety & Sustainable Dev Arid Lands, Qilian Alpine Ecol & Hydrol Res Stn, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China
关键词
Snow water equivalent; Snow depth; Estimation model; Spatiotemporal distribution; Variations; China; COVER; DENSITY; CLIMATE; VARIABILITY; PATTERNS; TRENDS; DYNAMICS; RUNOFF; MODEL; RAIN;
D O I
10.1016/j.ejrh.2024.101664
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: China. Study focus: The snow water equivalent (SWE) characterizes the hydrological significance of the snow and is essential for the study of water resources in snow-covered areas. However, SWE measurements are time-consuming and labour-intensive, and the amount of observed SWE data globally is small compared to snow depth (SD), particularly in China. This has limited the study of snow hydrology in China. To this end, we parameterize the SWE and briefly analyse the spatiotemporal distribution and variations of the SWE in China. New hydrological insights for the region: The mean absolute error, root mean square error and NashSutcliffe efficiency coefficient of the estimation model are 0.49 g cm -2, 0.81 g cm -2, and 0.80, respectively, which indicate that the model performs well overall. The estimation model is able to accurately estimate SWE for different seasons and altitudes in China. However, due to the influence of SD, the estimation model is more applicable in snow -rich areas such as the Northern Xinjiang, Northeast China and middle and lower Yangtze River Plain, and less applicable in the Qinghai -Tibet Plateau. The trend of SWE in China increases at high latitudes and low altitudes and decreases at low latitudes and high altitudes. The seasonality trend of SWE varies widely in different regions. The results of the study provide a new approach to the study of snow hydrology in China.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] INVESTIGATING HEMISPHERICAL TRENDS IN SNOW ACCUMULATION USING GLOBSNOW SNOW WATER EQUIVALENT DATA
    Luojus, Kari
    Pulliainen, Jouni
    Takala, Matias
    Lemmetyinen, Juha
    Derksen, Chris
    Metsamaki, Sari
    Bojkov, Bojan
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3772 - 3774
  • [22] Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
    Stigter, Emmy E.
    Wanders, Niko
    Saloranta, Tuomo M.
    Shea, Joseph M.
    Bierkens, Marc F. P.
    Immerzeel, Walter W.
    CRYOSPHERE, 2017, 11 (04): : 1647 - 1664
  • [23] Estimating snow water equivalent using unmanned aerial vehicles for determining snow-melt runoff
    Niedzielski, Tomasz
    Szymanowski, Mariusz
    Mizinski, Bartlomiej
    Spallek, Waldemar
    Witek-Kasprzak, Matylda
    Slopek, Jacek
    Kasprzak, Marek
    Blas, Marek
    Sobik, Mieczyslaw
    Jancewicz, Kacper
    Borowicz, Dorota
    Remisz, Joanna
    Modzel, Piotr
    Mecina, Katarzyna
    Leszczynski, Lubomir
    JOURNAL OF HYDROLOGY, 2019, 578
  • [24] Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent
    López-Moreno, J.I.
    Fassnacht, S.R.
    Heath, J.T.
    Musselman, K.N.
    Revuelto, J.
    Latron, J.
    Morán-Tejeda, E.
    Jonas, T.
    Advances in Water Resources, 2013, 55 : 40 - 52
  • [25] Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent
    Lopez-Moreno, J. I.
    Fassnacht, S. R.
    Heath, J. T.
    Musselman, K. N.
    Revuelto, J.
    Latron, J.
    Moran-Tejeda, E.
    Jonas, T.
    ADVANCES IN WATER RESOURCES, 2013, 55 : 40 - 52
  • [26] Gridded North American monthly snow depth and snow water equivalent for GCM evaluation
    Brown, RD
    Brasnett, B
    Robinson, D
    ATMOSPHERE-OCEAN, 2003, 41 (01) : 1 - 14
  • [27] Investigating ANN architectures and training to estimate snow water equivalent from snow depth
    Ntokas, Konstantin F. F.
    Odry, Jean
    Boucher, Marie-Amelie
    Garnaud, Camille
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (06) : 3017 - 3040
  • [28] SPATIAL MODELING OF SNOW WATER EQUIVALENT USING AIRBORNE AND GROUND-BASED SNOW DATA
    CARROLL, SS
    DAY, GN
    CRESSIE, N
    CARROLL, TR
    ENVIRONMETRICS, 1995, 6 (02) : 127 - 139
  • [29] Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran
    Tabari, Hossein
    Marofi, S.
    Abyaneh, H. Zare
    Sharifi, M. R.
    NEURAL COMPUTING & APPLICATIONS, 2010, 19 (04): : 625 - 635
  • [30] The Potential of Estimating Snow Depth from QuikScat Scatterometer Data and Snow Physical Model
    Xiong, Chuan
    Shi, Jiancheng
    Cui, Yurong
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4096 - 4096