Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning

被引:15
|
作者
Molina-Coronado, Borja [1 ]
Mori, Usue [2 ]
Mendiburu, Alexander [1 ]
Miguel-Alonso, Jose [1 ]
机构
[1] Univ Basque Country UPV EHU, Dept Comp Architecture & Technol, Ps Manuel Lardizabal 1, Donostia San Sebastian 20018, Gipuzkoa, Spain
[2] Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Ps Manuel Lardizabal 1, Donostia San Sebastian 20018, Gipuzkoa, Spain
关键词
Android malware detection; Machine learning; Mobile security; Experimental analysis; Static analysis; OBFUSCATION; DISCOVERY; KNOWLEDGE; MODEL;
D O I
10.1016/j.cose.2022.102996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As in other cybersecurity areas, machine learning (ML) techniques have emerged as a promising solution to detect Android malware. In this sense, many proposals employing a variety of algorithms and feature sets have been presented to date, often reporting impresive detection performances. However, the lack of reproducibility and the absence of a standard evaluation framework make these proposals difficult to compare. In this paper, we perform an analysis of 10 influential research works on Android malware detection using a common evaluation framework. We have identified five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models and their performances. In particular, we analyze the effect of (1) the presence of duplicated samples, (2) label (goodware/greyware/malware) attribution, (3) class imbalance, (4) the presence of apps that use evasion techniques and, (5) the evolution of apps. Based on this extensive experimentation, we conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results. Our findings also highlight that it is imperative to generate realistic experimental scenarios, taking into account the aforementioned factors, to foster the rise of better ML-based Android malware detection solutions. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Backdoor Attack on Machine Learning Based Android Malware Detectors
    Li, Chaoran
    Chen, Xiao
    Wang, Derui
    Wen, Sheng
    Ahmed, Muhammad Ejaz
    Camtepe, Seyit
    Xiang, Yang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3357 - 3370
  • [2] Static analysis framework for permission-based dataset generation and android malware detection using machine learning
    Pathak, Amarjyoti
    Kumar, Th. Shanta
    Barman, Utpal
    EURASIP JOURNAL ON INFORMATION SECURITY, 2024, 2024 (01):
  • [3] Meizodon: Security Benchmarking Framework for Static Android Malware Detectors
    Rodriguez, Sebastiaan Alvarez
    van der Kouwe, Erik
    THIRD CENTRAL EUROPEAN CYBERSECURITY CONFERENCE (CECC 2019), 2019,
  • [4] AdDroid: Rule-Based Machine Learning Framework for Android Malware Analysis
    Anam Mehtab
    Waleed Bin Shahid
    Tahreem Yaqoob
    Muhammad Faisal Amjad
    Haider Abbas
    Hammad Afzal
    Malik Najmus Saqib
    Mobile Networks and Applications, 2020, 25 : 180 - 192
  • [5] AdDroid: Rule-Based Machine Learning Framework for Android Malware Analysis
    Mehtab, Anam
    Shahid, Waleed Bin
    Yaqoob, Tahreem
    Amjad, Muhammad Faisal
    Abbas, Haider
    Afzal, Hammad
    Saqib, Malik Najmus
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (01): : 180 - 192
  • [6] A Survey of Android Malware Static Detection Technology Based on Machine Learning
    Wu, Qing
    Zhu, Xueling
    Liu, Bo
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [7] Effectiveness of machine learning based android malware detectors against adversarial attacks
    Jyothish, A.
    Mathew, Ashik
    Vinod, P.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2549 - 2569
  • [8] On the Deterioration of Learning-Based Malware Detectors for Android
    Fu, Xiaoqin
    Cai, Haipeng
    2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2019), 2019, : 272 - 273
  • [9] Evaluation of Tree Based Machine Learning Classifiers for Android Malware Detection
    Rana, Md. Shohel
    Rahman, Sheikh Shah Mohammad Motiur
    Sung, Andrew H.
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II, 2018, 11056 : 377 - 385
  • [10] On the Evaluation of the Machine Learning Based Hybrid Approach for Android Malware Detection
    Ratyal, Natasha Javed
    Khadam, Maryam
    Aleem, Muhammad
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 100 - 107