Borate-pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion

被引:67
|
作者
Kwon, Hyeokjin [1 ]
Kim, Hongsin [2 ]
Hwang, Jaemin [1 ]
Oh, Wonsik [1 ]
Roh, Youngil [1 ]
Shin, Dongseok [2 ]
Kim, Hee-Tak [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon, South Korea
[2] LG Energy Solut, Battery R&D, Daejeon, South Korea
[3] LG Energy Solut, KAIST, KAIST Frontier Res Lab, Daejeon, South Korea
关键词
LITHIUM-ION BATTERIES; SURFACE-ENERGY; POUCH CELLS; CYCLE LIFE; ANODE; PERFORMANCE; INTERFACES; ADDITIVES; CALENDAR;
D O I
10.1038/s41560-023-01405-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Engineering liquid electrolytes for lithium (Li)-metal electrodes has been used to control the morphology of deposited Li in Li-metal batteries (LMBs). However, the Li corrosion problem remains unresolved, hindering the design of lean electrolytes for practical LMBs, which require the electrolyte/capacity (E/C) ratio to be 2 g Ah(-1) or lower. Here we report a borate-pyran-based electrolyte to address the chronic Li-corrosion problem. We discovered that the borate-pyran electrolyte transforms large LiF crystallites in the solid-electrolyte interphase into fine crystalline or glassy LiF, which enhances the passivity of the Li/electrolyte interface by minimizing the permeation of electrolyte molecules into the solid-electrolyte interphase. LMBs assembled with the borate-pyran electrolyte, a high-nickel layered oxide cathode (3.83 mAh cm(-)(2)) and thin lithium (20 mu m) delivered a high initial full-cell-level energy density (>400 Wh kg(-)(1)) and operated for 400 cycles with 70% capacity retention at an E/C ratio of 1.92 g Ah(-)(1), 350 cycles with 73% capacity retention at 1.24 g Ah(-)(1) and 200 cycles with 85% retention at 0.96 g Ah(-)(1).
引用
收藏
页码:57 / 69
页数:13
相关论文
共 50 条
  • [21] Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries
    Lee, Seon Hwa
    Hwang, Jang-Yeon
    Ming, Jun
    Kim, Hun
    Jung, Hun-Gi
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2021, 6 (06) : 2153 - 2161
  • [22] Ag Plumes Grown on Cu for Li-Lean Anode of High Energy Density Li-Metal Batteries
    Zhang, Dehui
    Xia, Zhiyong
    Li, Zihao
    Wang, Huirong
    Zhang, Gaige
    He, Zhaozhao
    Zhou, Hebing
    Xu, Mengqing
    Wei, Xiaoming
    Li, Weishan
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6338 - 6347
  • [23] Understanding the complexities of Li metal for solid-state Li-metal batteries
    Westover, Andrew S.
    MRS BULLETIN, 2024, 49 (05) : 503 - 511
  • [24] Surface Adaptive Dual-Layer Protection of Li-metal Anode for Extending Cycle-Life of Li-Sulfur Batteries with Lean Electrolyte
    Choi, Bokyung
    Kim, Kyung-Geun
    Lim, Minhong
    Kim, Beomjun
    Seo, Jiyeon
    Lee, Jiwon
    Park, Sanghyeon
    Kim, Ki-Hyun
    Lee, Yong Min
    Lee, Hongkyung
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (28)
  • [25] Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects
    Sun, Siyu
    Wang, Kehan
    Hong, Zhanglian
    Zhi, Mingjia
    Zhang, Kai
    Xu, Jijian
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [26] Electrolyte Design for Low-Temperature Li-Metal Batteries:Challenges and Prospects
    Siyu Sun
    Kehan Wang
    Zhanglian Hong
    Mingjia Zhi
    Kai Zhang
    Jijian Xu
    Nano-Micro Letters, 2024, 16 (02) : 371 - 388
  • [27] Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries
    Nagpure, Shrikant C.
    Tanim, Tanvir R.
    Dufek, Eric J.
    Viswanathan, Vilayanur V.
    Crawford, Alasdair J.
    Wood, Sean M.
    Xiao, Jie
    Dickerson, Charles C.
    Liaw, Boryann
    JOURNAL OF POWER SOURCES, 2018, 407 : 53 - 62
  • [28] Gas Generation Mechanism in Li-Metal Batteries
    Huajun Zhao
    Jun Wang
    Huaiyu Shao
    Kang Xu
    Yonghong Deng
    Energy & Environmental Materials , 2022, (01) : 327 - 336
  • [29] Li-Metal Batteries: Enter the anode matrix
    Adam Brotchie
    Nature Reviews Materials, 1
  • [30] Gas Generation Mechanism in Li-Metal Batteries
    Huajun Zhao
    Jun Wang
    Huaiyu Shao
    Kang Xu
    Yonghong Deng
    Energy & Environmental Materials, 2022, 5 (01) : 327 - 336