Stability Properties of Geometrothermodynamic Cosmological Models

被引:1
|
作者
Beissen, Nurzada [1 ]
Abishev, Medeu [1 ,2 ]
Khassanov, Manas [1 ]
Aitassov, Temirbolat [3 ]
Mamatova, Sagira [1 ]
Toktarbay, Saken [1 ,4 ]
机构
[1] Al Farabi Kazakh Natl Univ, Inst Expt & Theoret Phys, Alma Ata 050040, Kazakhstan
[2] Inst Nucl Phys, 1 Ibragimova St, Alma Ata 050032, Kazakhstan
[3] Abai Kazakh Natl Pedag Univ, Dept Math Phys & Informat Teaching Methods, Alma Ata 050010, Kazakhstan
[4] Kazakh Natl Womens Teacher Training Univ, Dept Phys, Alma Ata 050000, Kazakhstan
关键词
cosmology; geometrothermodynamics; METRIC GEOMETRY; EQUILIBRIUM THERMODYNAMICS;
D O I
10.3390/e25101391
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce the main aspects of the inflationary era and the Lambda CDM paradigm. We use GTD to analyze the geometric properties of the corresponding equilibrium space and to derive the stability properties and phase transition structure of the cosmological model.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Real space statistical properties of standard cosmological models
    Gabrielli, A
    Joyce, M
    Labini, FS
    [J]. MODELING OF COMPLEX SYSTEMS, 2003, 661 : 188 - 194
  • [32] THE STABILITY OF TEST BODY MOTION IN COSMOLOGICAL MODELS OF GENERAL-RELATIVITY
    RYABUSHKO, A
    BAKHANKOV, A
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1989, 21 (01) : 1 - 11
  • [33] Global stability analysis for cosmological models with nonminimally coupled scalar fields
    Skugoreva, Maria A.
    Toporensky, Alexey V.
    Vernov, Sergey Yu.
    [J]. PHYSICAL REVIEW D, 2014, 90 (06):
  • [34] Cosmological models
    Schramm, DN
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 70 : 3 - 13
  • [35] COSMOLOGICAL MODELS
    HAJJBOUTROS, J
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (04) : 487 - 493
  • [36] COSMOLOGICAL MODELS
    HARVEY, A
    [J]. AMERICAN JOURNAL OF PHYSICS, 1993, 61 (10) : 901 - 906
  • [37] COSMOLOGICAL MODELS WITH A VARIABLE COSMOLOGICAL TERM
    BERMAN, MS
    [J]. PHYSICAL REVIEW D, 1991, 43 (04): : 1075 - 1078
  • [38] Stability properties of BSB models
    Botelho, F
    [J]. FOUNDATIONS AND TOOLS FOR NEURAL MODELING, PROCEEDINGS, VOL I, 1999, 1606 : 297 - 300
  • [39] COSMOLOGICAL MODELS WITH A VARIABLE COSMOLOGICAL TERM AND BULK VISCOUS MODELS
    BEESHAM, A
    [J]. PHYSICAL REVIEW D, 1993, 48 (08): : 3539 - 3543
  • [40] Kovalevski Exponents and Integrability Properties in Class A Homogeneous Cosmological Models
    Marek Szydłowski
    Marek Biesiada
    [J]. Journal of Nonlinear Mathematical Physics, 2002, 9 : 1 - 10