Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] Parameter Estimation of Quantum Channels
    Ji, Zhengfeng
    Wang, Guoming
    Duan, Runyao
    Feng, Yuan
    Ying, Mingsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 5172 - 5185
  • [32] Quantum clone and states estimation for n-state system
    Zhang, CW
    Li, CF
    Guo, GC
    PHYSICS LETTERS A, 2000, 271 (1-2) : 31 - 34
  • [33] SU(N) → SU(2) symmetry breaking in quantum antiferromagnets
    Kolezhuk, A. K.
    Zavertanyi, T. L.
    CONDENSED MATTER PHYSICS, 2020, 23 (04) : 43711 - 1
  • [34] SU(N) quantum Hall skyrmions
    Arovas, DP
    Karlhede, A
    Lilliehöök, D
    PHYSICAL REVIEW B, 1999, 59 (20): : 13147 - 13150
  • [35] Parameter estimation with cluster states
    Rosenkranz, Matthias
    Jaksch, Dieter
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [36] Quantum secret sharing with quantum graph states
    Liang Jian-Wu
    Cheng Zi
    Shi Jin-Jing
    Guo Ying
    ACTA PHYSICA SINICA, 2016, 65 (16)
  • [37] Quantum causal graph dynamics
    Arrighi, Pablo
    Martiel, Simon
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [38] Deterministic Quantum Phase Estimation beyond N00N States
    Nielsen, Jens A. H.
    Neergaard-Nielsen, Jonas S.
    Gehring, Tobias
    Andersen, Ulrik L.
    PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [39] COHERENT STATES OF SU(N) GROUPS
    GITMAN, DM
    SHELEPIN, AL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 313 - 327
  • [40] Quantum discord of SU(2) invariant states
    Cakmak, B.
    Gedik, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (46)