Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Parameter estimation with mixed quantum states
    D. Braun
    The European Physical Journal D, 2010, 59 : 521 - 523
  • [2] Parameter estimation with mixed quantum states
    Braun, D.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (03): : 521 - 523
  • [3] Quantum parameter estimation with general dynamics
    Haidong Yuan
    Chi-Hang Fred Fung
    npj Quantum Information, 3
  • [4] Quantum parameter estimation with general dynamics
    Yuan, Haidong
    Fung, Chi-Hang Fred
    NPJ QUANTUM INFORMATION, 2017, 3
  • [5] Simplex solid states of SU(N) quantum antiferromagnets
    Arovas, Daniel P.
    PHYSICAL REVIEW B, 2008, 77 (10)
  • [6] Trapping phenomenon of the parameter estimation in asymptotic quantum states
    Berrada, K.
    LASER PHYSICS, 2016, 26 (09)
  • [7] Local distinguishability of orthogonal quantum states and generators of SU(N)
    Ye, Ming-Yong
    Jiang, Wei
    Chen, Ping-Xing
    Zhang, Yong-Sheng
    Zhou, Zheng-Wei
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [8] Quantum Dynamics on the Worldvolume from Classical su(n) Cohomology
    Isidro, Jose M.
    Fernandez De Cordoba, Pedro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [9] Langevin dynamics of generalized spins as SU(N) coherent states
    Dahlbom, David
    Miles, Cole
    Zhang, Hao
    Batista, Cristian D.
    Barros, Kipton
    PHYSICAL REVIEW B, 2022, 106 (23)
  • [10] Classical spin dynamics based on SU(N) coherent states
    Zhang, Hao
    Batista, Cristian D.
    PHYSICAL REVIEW B, 2021, 104 (10)