Topological Effects with Inverse Quadratic Yukawa Plus Inverse Square Potential on Eigenvalue Solutions

被引:2
|
作者
Ahmed, Faizuddin [1 ]
机构
[1] Univ Sci & Technol Meghalaya, Dept Phys, Ri Bhoi 793101, Meghalaya, India
来源
GRAVITATION & COSMOLOGY | 2023年 / 29卷 / 03期
关键词
HARMONIC-OSCILLATOR; MAGNETIC MONOPOLE; CHARGED-PARTICLE; VERTICAL LINE; SCATTERING; DISTORTION;
D O I
10.1134/S0202289323030039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the nonrelativistic Schro<spacing diaeresis> dinger wave equation under the influence of a quantum flux field with an interaction potential in the background of a pointlike global monopole (PGM). In fact, we consider an inverse quadratic Yukawa plus inverse square potential and derive the radial equation employing the Greene-Aldrich approximation scheme in the centrifugal term. We determine the approximate eigenvalue solution using the parametric Nikiforov-Uvarov method and analyze the result. Afterwards, we derive the radial wave equation using the same potential employing a power series expansion method in the exponential potential and solve it analytically. We show that the energy eigenvalues are shifted by the topological defects of a pointlike global monopole as compared to the flat space result. In addition, we see that the energy eigenvalues depend on the quantum flux field that shows an analogue to the AharonovBohm effect.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 50 条
  • [31] Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
    Zhong, Hong-Xiu
    Chen, Guo-Liang
    Zhang, Xiang-Yun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [32] INVERSE SQUARE POTENTIAL FIELD
    GUGGENHEIM, EA
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 89 (565P): : 491 - +
  • [33] Renormalization of the inverse square potential
    Camblong, HE
    Epele, LN
    Fanchiotti, H
    Canal, CAC
    PHYSICAL REVIEW LETTERS, 2000, 85 (08) : 1590 - 1593
  • [34] An inverse quadratic eigenvalue problem for damped gyroscopic systems
    Yuan, Yongxin
    Zhou, Lei
    Chen, Jinghua
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2572 - 2585
  • [35] On inverse quadratic eigenvalue problems with partially prescribed eigenstructure
    Chu, MT
    Kuo, YC
    Lin, WW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (04) : 995 - 1020
  • [36] On inverse quadratic eigenvalue problems with partially prescribed eigenstructure
    Chu, MT
    Kuo, YC
    Lin, WW
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 94 - 97
  • [37] INVERSE EIGENVALUE PROBLEMS FOR SMOOTH POTENTIAL
    Safar, Orsolya
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 315 - 324
  • [38] An inverse quadratic eigenvalue problem for damped structural systems
    Yuan, Yongxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [39] Quadratic inverse eigenvalue problem for damped gyroscopic systems
    Qian, Jiang
    Cheng, Mingsong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 306 - 312
  • [40] Inverse Generalized Eigenvalue Problem for Principal Square Submatrix
    Li, Zhibin
    Chang, Jing
    2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 298 - 301