Hierarchical variance analysis of solar cell production using machine learning and numerical simulations

被引:0
|
作者
Kloeter, Bernhard [1 ]
Wagner-Mohnsen, Hannes [1 ]
Wasmer, Sven [1 ]
机构
[1] WAVELABS Solar Metrol Syst GmbH, D-04179 Leipzig, Germany
来源
2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC | 2023年
关键词
D O I
10.1109/PVSC48320.2023.10359682
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar cells are an important source of renewable energy and have become a major industry with annual production capacities above 200 GW. The large amount of data produced during the solar cell production process calls for big data solutions and machine learning based approaches to improve quality and increase efficiency. In this work, we analyzed solar simulator data from 60,000 PERC solar cells using a hierarchical model based on machine learning, and compared the results to a theoretical model to extract missing information and determine the most likely input parameters for each produced solar cell. This approach enabled us to gain insight into the mechanisms that lead to the variance of conversion efficiency.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Machine learning techniques for daily solar energy prediction and interpolation using numerical weather models
    Martin, R.
    Aler, R.
    Valls, J. M.
    Galvan, I. M.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (04): : 1261 - 1274
  • [22] A Study of Machine Learning Techniques for Daily Solar Energy Forecasting Using Numerical Weather Models
    Aler, Ricardo
    Martin, Ricardo
    Valls, Jose M.
    Galvan, Ines M.
    INTELLIGENT DISTRIBUTED COMPUTING VIII, 2015, 570 : 269 - 278
  • [23] Joint detection of variance changes using hierarchical Bayesian analysis
    Chabert, M
    Tourneret, JY
    Coulon, M
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 613 - 616
  • [24] Solar Irradiance Probabilistic Forecasting Using Machine Learning, Metaheuristic Models and Numerical Weather Predictions
    Sansine, Vateanui
    Ortega, Pascal
    Hissel, Daniel
    Hopuare, Marania
    SUSTAINABILITY, 2022, 14 (22)
  • [25] Deep Analysis of Mitochondria and Cell Health Using Machine Learning
    Atena Zahedi
    Vincent On
    Rattapol Phandthong
    Angela Chaili
    Guadalupe Remark
    Bir Bhanu
    Prue Talbot
    Scientific Reports, 8
  • [26] Deep Analysis of Mitochondria and Cell Health Using Machine Learning
    Zahedi, Atena
    On, Vincent
    Phandthong, Rattapol
    Chaili, Angela
    Remark, Guadalupe
    Bhanu, Bir
    Talbot, Prue
    SCIENTIFIC REPORTS, 2018, 8
  • [27] Pattern analysis of peripheral-vestibular deficits with machine learning using hierarchical clustering
    Tarnutzer, A. A.
    Weber, K. P.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2022, 434
  • [28] Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
    Bruski, Dawid
    Pachocki, Lukasz
    Sciegaj, Adam
    Witkowski, Wojciech
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 184
  • [29] Reconstruction of proper numerical inlet boundary conditions for draft tube flow simulations using machine learning
    Veras, Pedro
    Metais, Olivier
    Balarac, Guillaume
    Georges, Didier
    Bombenger, Antoine
    Segoufin, Claire
    COMPUTERS & FLUIDS, 2023, 254
  • [30] Forecasting Solar Irradiance Using Machine Learning
    Shahin, Md Burhan Uddin
    Sarkar, Antu
    Sabrina, Tishna
    Roy, Shaati
    2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2020,