Ghrelin alleviates hypoxia/reoxygenation-induced H9C2 injury by activating autophagy and AMPK/ULK1 pathway

被引:1
|
作者
Liu, Hui [1 ]
Lv, Wei [2 ]
Ouyang, Li [3 ]
Xu, Li [4 ]
机构
[1] Jinan Cent Hosp, Dept Thyroid Surg, Jinan 250013, Peoples R China
[2] Jinan Cent Hosp, Dept Cardiovasc Unit2, Jinan 250013, Peoples R China
[3] Outpatient Dept PLA 94201, Dept Surg, Jinan 250013, Peoples R China
[4] ShanDong First Med Univ, Cent Hosp, Dept Cardil Intens Care, Jinan 250013, Peoples R China
关键词
Ghrelin; hypoxia/reoxygenation; inflammatory; autophagy; AMPK/; ULK1; pathway; EXPRESSION; GROWTH; LC3; DEACETYLATION; METABOLISM; STARVATION; AMBRA1; PARKIN; PLAYS; CELLS;
D O I
10.14715/cmb/2023.69.11.36
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The research aims to explore the protective effects of ghrelin and its underlying molecular mechanisms in an H9C2 hypoxia/reoxygenation model. H9C2 cells were transfected with ghrelin overexpression lentiviral vector. The hypoxia/reoxygenation H9C2 model was constructed. The expression of ghrelin was analyzed by qRT-PCR and Western Blotting. CCK8, flow cytometry and TUNEL assay were used to analyze the impact of ghrelin on the survival and apoptosis of H9C2 injured by hypoxia/reoxygenation. The levels of autophagyrelated proteins in H9C2 cells were evaluated through Western blotting. ELISA was utilized to assess how ghrelin affects the inflammatory response triggered by hypoxia/reoxygenation. Western blotting was utilized to investigate the regulatory role of ghrelin on the AMPK/ULK1 pathway. Additionally, the AMPK inhibitor Compound C was introduced to delve further into the associated mechanism. Hypoxia/reoxygenation injury decreased the expression of ghrelin. Transfection of ghrelin overexpression lentiviral vector significantly increased the expression of ghrelin in H9C2 cells. Ghrelin overexpression can significantly promote cell survival, reduce apoptosis, activate AMPK, ULK1 and AMBRA1, promote autophagy, increase the expression of LC3BII/LC3BI and Beclin-1, reduce the expression of P62, and reduce inflammatory response. Ghrelin inhibited apoptosis of H9C2 caused by hypoxia/reoxygenation and reduced inflammatory response, which mechanism is related to activation of AMPK/ULK1 pathway and autophagy.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [21] Isoquercetin ameliorated hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis via a mitochondrial-dependent pathway
    Cao, Heng
    Xu, Hao
    Zhu, Guoqing
    Liu, Shaowen
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 95 : 938 - 943
  • [22] Pretreatment of ghrelin protects H9c2 cells against hypoxia/reoxygenation-induced cell death via PI3K/AKT and AMPK pathways
    Chen, Yanbo
    Wang, Honggang
    Zhang, Yong
    Wang, Zhengping
    Liu, Shanshan
    Cui, Lianqun
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2019, 47 (01) : 2179 - 2187
  • [23] Edaravone alleviates hypoxia-acidosis/reoxygenation-induced neuronal injury by activating ERK1/2
    Wang, Guibin
    Su, Jingjing
    Li, Lingjuan
    Feng, Jie
    Shi, Lei
    He, Wei
    Liu, Yunhai
    NEUROSCIENCE LETTERS, 2013, 543 : 72 - 77
  • [24] Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells
    Dai, Dongpu
    Yang, Jian
    Zhao, Chenze
    Wu, Huandong
    Ding, Jie
    Sun, Xiaotong
    Hu, Shenjiang
    INTERNATIONAL HEART JOURNAL, 2018, 59 (04) : 821 - 828
  • [25] Ivabradine Attenuates Hypoxia/Reoxygenation-Induced Excessive Autophagy in H9c2 Cardiomyocyte by Modulation of the PI3K/Akt/mTOR Pathway
    Min Yang
    Hui Li
    Wu Jiatian
    Hua Tianfeng
    CIRCULATION, 2021, 144
  • [26] Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes
    Wu, Dongkai
    Jiang, Haihe
    Chen, Shengxi
    Zhang, Heng
    MOLECULAR MEDICINE REPORTS, 2015, 11 (05) : 3988 - 3994
  • [27] HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes
    Chen, Dongling
    Jin, Zhe
    Zhang, Jingjing
    Jiang, Linlin
    Chen, Kai
    He, Xianghu
    Song, Yinwei
    Ke, Jianjuan
    Wang, Yanlin
    PLOS ONE, 2016, 11 (05):
  • [28] p21WAF1 and hypoxia/reoxygenation-induced premature senescence of H9c2 cardiomyocytes
    Wang, Dan
    Zhang, Yu-Zhen
    Yang, Bing
    Zhang, Feng-Xiang
    Cao, Ming-Yong
    Wang, Cheng
    Chen, Ming-Long
    FOLIA HISTOCHEMICA ET CYTOBIOLOGICA, 2011, 49 (03) : 445 - 451
  • [30] Glaucocalyxin A Protects H9c2 Cells Against Hypoxia/Reoxygenation-Induced Injury Through the Activation of Akt/Nrf2/HO-1 Pathway
    Peng, Zhuo
    Zhang, Rui
    Pan, Longfei
    Pei, Honghong
    Niu, Zequn
    Wang, Hai
    Lv, Junhua
    Dang, Xiaoyan
    CELL TRANSPLANTATION, 2020, 29