Multifunctionality in Nature: Structure-Function Relationships in Biological Materials

被引:6
|
作者
Zhong, Jiaming [1 ]
Huang, Wei [1 ]
Zhou, Huamin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
关键词
biological materials; multifunctionality; multiscale structure; bioinspiration; structure-function relationship; SHEEP OVIS-CANADENSIS; SHAPE-MEMORY; SPIDER SILK; BIOINSPIRED MATERIALS; MECHANICAL-PROPERTIES; ADHESION; DESIGN; FABRICATION; MELANIN; NACRE;
D O I
10.3390/biomimetics8030284
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Examining structure-function relationships of mesoporous catalytic materials for biomass conversion
    Brunelli, Nicholas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [22] Structure-function relationships of antimicrobial peptides
    Hwang, Peter M.
    Vogel, Hans J.
    Biochemistry and Cell Biology, 76 (2-3): : 235 - 246
  • [23] Structure-function relationships in yeast tubulins
    Richards, KL
    Anders, KR
    Nogales, E
    Schwartz, K
    Downing, KH
    Botstein, D
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) : 1887 - 1903
  • [24] Factor XII Structure-Function Relationships
    Shamanaev, Aleksandr
    Litvak, Maxim
    Ivanov, Ivan
    Srivastava, Priyanka
    Sun, Mao-Fu
    Dickeson, S. Kent
    Kumar, Sunil
    He, Tracey Z. Z.
    Gailani, David
    SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2024, 50 (07): : 937 - 952
  • [25] Structure-function relationships in platelet disorders
    Israels, S.
    HAEMOPHILIA, 2010, 16 : 122 - 122
  • [26] Brain and behavior: Structure-function relationships
    Nahas, GG
    Burks, T
    DRUG ABUSE IN THE DECADE OF THE BRAIN, 1997, : 3 - 9
  • [27] Exocrine gland structure-function relationships
    Khan, Sameed
    Fitch, Sarah
    Knox, Sarah
    Arora, Ripla
    DEVELOPMENT, 2022, 149 (01):
  • [28] Structure-function relationships of human meniscus
    Danso, Elvis K.
    Oinas, Joonas M. T.
    Saarakkala, Simo
    Mikkonen, Santtu
    Toyras, Juha
    Korhonen, Rami K.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 67 : 51 - 60
  • [29] Structure-Function Relationships in Protein Complexes
    Kundrotas, Petras
    Belkin, Saveliy
    Vakser, Ilya
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 46A - 46A
  • [30] STUDIES ON STRUCTURE-FUNCTION RELATIONSHIPS OF GLUCAGON
    FELTS, PW
    FERGUSON, ME
    HAGEY, KA
    STITT, ES
    MITCHELL, WM
    DIABETOLOGIA, 1970, 6 (01) : 44 - &