A Physics-Informed Action Network for Transient Stability Preventive Control

被引:6
|
作者
Liu, Youbo [1 ]
Gao, Shuyu [1 ]
Qiu, Gao [1 ]
Liu, Tingjian [1 ]
Ding, Lijie [2 ]
Liu, Junyong [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] State Grid Sichuan Elect Power Res Inst, Chengdu 610065, Peoples R China
关键词
Power system stability; Transient analysis; Training; Thermal stability; Mathematical models; Stability criteria; Costs; Deep learning; physics-informed action network; transient stability preventive control; DYNAMIC SECURITY ASSESSMENT; SYSTEMS; MODEL;
D O I
10.1109/TPWRS.2022.3233763
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a physics-informed action network (PIAN) for power system transient stability preventive control (TSPC). The network firstly renders deep learning to reduce the TSPC complexity. Unlike common data-driven methods that superficially imitate control experience, TSPC is then analytically embedded into the proposed PIAN network, so that to enforce the network to learn in-depth physical patterns. The well-learned PIAN enables highly generalized real-time decisions. Comparisons with one model-based and two data-driven baselines on the IEEE 39-bus system and the IEEE 145-bus system highlight that, the proposed method enables highly reliable control decisions, and beats the others in terms of decision efficiency and generalizability.
引用
收藏
页码:1771 / 1774
页数:4
相关论文
共 50 条
  • [41] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [42] Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling
    Brumand-Poor, Faras
    Barlog, Florian
    Plueckhahn, Nils
    Thebelt, Matteo
    Bauer, Niklas
    Schmitz, Katharina
    LUBRICANTS, 2024, 12 (11)
  • [43] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [44] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [45] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [46] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [47] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [48] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [49] Physics-informed neural network classification framework for reliability analysis
    Shi, Yan
    Beer, Michael
    Expert Systems with Applications, 2024, 258
  • [50] Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester
    Bai, C. Y.
    Yeh, F. Y.
    Shu, Y. C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946