Polydopamine functionalized Ti3AlC2 MAX based electrochemical biosensor for early and sensitive detection of Mycobacterium tuberculosis

被引:4
|
作者
Goel, Himanshi [1 ]
Patel, Monika [2 ,3 ]
Chaturvedi, Mansi [2 ]
Gupta, Gaurav Kumar [2 ,3 ]
Khare, Anup Kumar [2 ,3 ]
Mondal, D. P. [2 ,3 ]
Srivastava, Avanish Kumar [2 ,3 ]
Dwivedi, Neeraj [2 ,3 ]
Mukherjee, Maumita Das [2 ,3 ]
Dhand, Chetna [2 ,3 ]
机构
[1] Amity Univ, Amity Inst Appl Sci, Noida, Uttar Pradesh, India
[2] Adv Mat & Proc Res Inst, CSIR, Hoshangabad Rd, Bhopal 462026, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Biosensor; MAx; M.tuberculosis; Polydopamine; Early Diagnosis; DNA BIOSENSOR; ELECTRODE;
D O I
10.1016/j.microc.2024.109899
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
MAX phase materials have attracted considerable attention for a variety of applications, including high temperature structures and coatings, electric contacts, heat exchangers, concentrated solar power, catalysis, owing to their versatile properties that include high corrosion-resistance and mechanical strength, tunable surface kinetics, excellent thermal and radiation stability, etc. However, chemically engineered MAX phase materials are yet to be explored in development of biosensing devices. Here, for the first time, we report the development of MAX-based electrochemical platform, functionalized with polydopamine (PDA), for the reliable detection of Mycobacterium tuberculosis (MTB), a high-risk infectious pathogen that is spreading at an alarming rate regardless of age. The probe DNA immobilizes onto the surface of MAX/PDA via avidin-biotin coupling to construct ssDNA/avidin/MAX/PDA modified biosensing electrode. Cyclic voltammetry and differential pulse voltammetry results confirm the high charge transfer kinetics, good redox behavior, and excellent stability in modified electrode. Moreover, modified biosensing electrode attains extremely low detection limit of 0.1 attomolar, excellent sensitivity of 1.67 x 10(-4) mA mu M-1, and high selectivity with low response time towards MTB. The applicability of developed PDA functionalized MAX bio-electrodes may be extended for the detection of other infectious diseases, thus signifying how crucial is the present discovery from the perspective of controlling conventional and emerging infectious diseases and probing critical biomarkers.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] General Trends of Structure Formation in Graded Composite Materials Based on the Ti3AlC2 MAX Phase on Titanium
    A. D. Prokopets
    A. S. Konstantinov
    A. P. Chizhikov
    P. M. Bazhin
    A. M. Stolin
    Inorganic Materials, 2020, 56 : 1087 - 1091
  • [32] Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene
    Shuck, Christopher E.
    Han, Meikang
    Maleski, Kathleen
    Hantanasirisakul, Kanit
    Kim, Seon Joon
    Choi, Junghoon
    Reil, William E. B.
    Gogotsi, Yury
    ACS APPLIED NANO MATERIALS, 2019, 2 (06) : 3368 - 3376
  • [33] Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene
    Roslyk, Iryna
    Baginskiy, Ivan
    Zahorodna, Veronika
    Gogotsi, Oleksiy
    Ippolito, Stefano
    Gogotsi, Yury
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (04) : 2605 - 2612
  • [34] Irradiation resistance properties studies on helium ions irradiated MAX phase Ti3AlC2
    Song, Peng
    Sun, Jianrong
    Wang, Zhiguang
    Cui, Minghuan
    Shen, Tielong
    Li, Yuanfei
    Pang, Lilong
    Zhu, Yabin
    Huang, Qing
    Lu, Jinjun
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 326 : 332 - 336
  • [35] Single crystal elastic constants of the MAX phase Ti3AlC2 determined by neutron diffraction
    Kirstein, O.
    Zhang, J. F.
    Kisi, E. H.
    Riley, D. P.
    Styles, M. J.
    Paradowska, A.
    THERMEC 2009, PTS 1-4, 2010, 638-642 : 2417 - +
  • [36] Deformation mechanisms during high temperature tensile creep of Ti3AlC2 MAX phase
    Drouelle, Elodie
    Joulain, Anne
    Cormier, Jonathan
    Gauthier-Brunet, Veronique
    Villechaise, Patrick
    Dubois, Sylvain
    Sallot, Pierre
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 622 - 630
  • [37] Study on the creep behavior and mechanisms of Ti3AlC2 MAX phase under ion irradiation
    Cheng, Zhaoyi
    Sun, Jianrong
    Zhang, Linqi
    Deng, Tianyu
    Yi, Wen
    Chen, Huaican
    Chang, Hailong
    Tai, Pengfei
    Tian, Yinan
    Li, Jian
    Zhang, Wei
    Gao, Pengcheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (05)
  • [38] Core structure and Peierls barrier of basal edge dislocations in Ti3AlC2 MAX phase
    Hossain, Rana
    Kimizuka, Hajime
    Shiihara, Yoshinori
    Ogata, Shigenobu
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 209
  • [39] Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C
    Shahin, N.
    Kazemi, Sh.
    Heidarpour, A.
    ADVANCED POWDER TECHNOLOGY, 2016, 27 (04) : 1775 - 1780
  • [40] Pressureless manufacturing of high purity Ti3AlC2 MAX phase material: Synthesis and characterisation
    Desai, Vyom
    Shrivastava, Aroh
    Zala, Arunsinh
    Parekh, Tejas
    Gupta, Surojit
    Jamnapara, N. I.
    VACUUM, 2023, 214