Multimodal Real-Time patient emotion recognition system using facial expressions and brain EEG signals based on Machine learning and Log-Sync methods

被引:3
|
作者
Mutawa, A. M. [1 ]
Hassouneh, Aya [1 ]
机构
[1] Kuwait Univ, Coll Engn & Petr, Dept Comp Engn, Kuwait, Kuwait
关键词
EEG; Multi-modal; Neural network; Log-sync; Face recognition; Emotion recognition; Hospitalized patients;
D O I
10.1016/j.bspc.2023.105942
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human Machine Interface (HMI) depends on emotion detection, especially for hospitalized patients. The emergence of the fourth industrial revolution (4IR) has heightened the interest in emotional intelligence in human-computer interaction (HCI). This work employs electroencephalography (EEG), an optical flow algorithm, and machine learning to create a multimodal intelligent real-time emotion recognition system. The objective is to assist hospitalized patients, disabled (deaf, mute, and bedridden) individuals, and autistic youngsters in expressing their authentic feelings. We fed our multimodal feature fusion vector to a classifier with long short-term memory (LSTM). We distinguished six fundamental emotions: anger, disgust, fear, sadness, joy, and surprise. The fusion feature vector was created utilizing the patient's geometric facial characteristics and EEG inputs. Utilizing 14 EEG inputs, we used four-band relative power channels, namely alpha (8-13 Hz), beta (13-30 Hz), gamma (30-49 Hz), and theta (4-8 Hz). We achieved a maximum recognition rate of 90.25 percent using just facial landmarks and 87.25 percent using only EEG data. When both facial and EEG streams were examined, we achieved 99.3 percent accuracy in a multimodal method.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Real-time Personalized Facial Expression Recognition System Based on Deep Learning
    Lee, Injae
    Jung, Heechul
    Ahn, Chung Hyun
    Seo, Jeongil
    Kim, Junmo
    Kwon, Ohseok
    2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2016,
  • [22] EMOTION RECOGNITION USING TIME-FREQUENCY FEATURES FROM PORTABLE EEG AND MACHINE LEARNING METHODS
    Lin, Tong
    Dou, Guangyao
    Qu, Xiaodong
    Sekuler, Robert
    Gutsell, Jennifer
    PSYCHOPHYSIOLOGY, 2023, 60 : S162 - S162
  • [23] Real-Time Facial Expression Recognition Based on the Improved Brain Emotional Learning Model
    Mei, Ying
    Yang, Xin
    Liu, Zhentao
    Wu, He
    Guo, Junyu
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9624 - 9628
  • [24] An Automated System for Sleep Staging using EEG Brain Signals Based on A Machine Learning Approach
    Satapathy, Santosh Kumar
    Kondaveeti, Hari Kishan
    Sreeja, S. R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [25] An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods
    Shen, Mingkan
    Wen, Peng
    Song, Bo
    Li, Yan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [26] Ensemble Machine Learning-Based Affective Computing for Emotion Recognition Using Dual-Decomposed EEG Signals
    Kamble, Kranti S.
    Sengupta, Joydeep
    Kamble, Kranti
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2496 - 2507
  • [27] Pipeline for Automatic Brain Stimulation with Real-Time Machine-Learning-Based Decoding of EEG Responses
    Makkonen, Matilda
    Kahilakoski, Olli-Pekka
    Alkio, Kyosti
    Zubarev, Ivan
    Ilmoniemi, Risto J.
    Mutanen, Tuomas P.
    Lioumis, Pantelis
    DIGITAL HEALTH AND WIRELESS SOLUTIONS, PT II, NCDHWS 2024, 2024, 2084 : 497 - 499
  • [28] Real-Time Traffic Sign Detection and Recognition System using Computer Vision and Machine Learning
    Patil, Rahul
    Ahire, Prashant
    Bamane, Kalyan
    Patankar, Abhijit
    Patil, Pramod D.
    Badoniya, Saomya
    Desai, Resham
    Bhandari, Gautam
    Dhami, Bikramjeet Singh
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 2244 - 2254
  • [29] Real-time arabic sign language recognition system using sensory glove and machine learning
    Mohamad Halabi
    Youssef Harkouss
    Neural Computing and Applications, 2025, 37 (9) : 6977 - 6993
  • [30] Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
    Essam H. Houssein
    Asmaa Hammad
    Abdelmgeid A. Ali
    Neural Computing and Applications, 2022, 34 : 12527 - 12557