Quantum criticality at cryogenic melting of polar bubble lattices

被引:1
|
作者
Luo, Wei [1 ,2 ]
Akbarzadeh, Alireza [1 ,2 ,3 ]
Nahas, Yousra [1 ,2 ]
Prokhorenko, Sergei [1 ,2 ]
Bellaiche, Laurent [1 ,2 ]
机构
[1] Univ Arkansas, Phys Dept, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Lonestar Coll, Sci Engn & Geosci, 9191 Barker Cypress Rd, Cypress, TX 77433 USA
基金
美国国家科学基金会;
关键词
NEGATIVE CAPACITANCE; ISING-MODEL; PHASE-DIAGRAM; TEMPERATURE; STATES;
D O I
10.1038/s41467-023-43598-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum fluctuations (QFs) caused by zero-point phonon vibrations (ZPPVs) are known to prevent the occurrence of polar phases in bulk incipient ferroelectrics down to 0 K. On the other hand, little is known about the effects of QFs on the recently discovered topological patterns in ferroelectric nanostructures. Here, by using an atomistic effective Hamiltonian within classical Monte Carlo (CMC) and path integral quantum Monte Carlo (PI-QMC), we unveil how QFs affect the topology of several dipolar phases in ultrathin Pb(Zr0.4Ti0.6)O3 (PZT) films. In particular, our PI-QMC simulations show that the ZPPVs do not suppress polar patterns but rather stabilize the labyrinth, bimeron and bubble phases within a wider range of bias field magnitudes. Moreover, we reveal that quantum fluctuations induce a quantum critical point (QCP) separating a hexagonal bubble lattice from a liquid-like state characterized by spontaneous motion, creation and annihilation of polar bubbles at cryogenic temperatures. Finally, we show that the discovered quantum melting is associated with anomalous physical response, as, e.g., demonstrated by a negative longitudinal piezoelectric coefficient. Quantum effects due to zero-point phonon vibrations are well-explored in bulk ferroelectrics, but little is known about them in ultra-thin films. Luo et al. report atomistic simulations of ultra-thin ferroelectrics, showing that, unlike in bulk, quantum fluctuations stabilize topological structures.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Plutonium and quantum criticality
    Chapline, G.
    Fluss, M.
    McCall, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 444 (SPEC. ISS.) : 142 - 144
  • [32] Quantum magnetism and criticality
    Subir Sachdev
    Nature Physics, 2008, 4 : 173 - 185
  • [33] The quantum criticality conundrum
    Laughlin, RB
    Lonzarich, GG
    Monthoux, P
    Pines, D
    ADVANCES IN PHYSICS, 2001, 50 (04) : 361 - 365
  • [34] Quantum magnetism and criticality
    Sachdev, Subir
    NATURE PHYSICS, 2008, 4 (03) : 173 - 185
  • [35] Bilocal quantum criticality
    Scammell, Harley D.
    Scheurer, Mathias S.
    Sachdev, Subir
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [36] Quantum criticality and the α/δ puzzle
    Chapline, G.
    PHILOSOPHICAL MAGAZINE, 2009, 89 (22-24) : 1831 - 1838
  • [37] Ferroelectric quantum criticality
    Rowley, S. E.
    Spalek, L. J.
    Smith, R. P.
    Dean, M. P. M.
    Itoh, M.
    Scott, J. F.
    Lonzarich, G. G.
    Saxena, S. S.
    NATURE PHYSICS, 2014, 10 (05) : 367 - 372
  • [38] ANALYSIS OF POLAR LATTICES PLATES
    GUTKOWSKI, W
    BAUER, J
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1970, 12 (11) : 949 - +
  • [39] Polar Lattices for Lossy Compression
    Liu, Ling
    Shi, Jinwen
    Ling, Cong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 6140 - 6163
  • [40] Multiferroic quantum criticality
    Awadhesh Narayan
    Andrés Cano
    Alexander V. Balatsky
    Nicola A. Spaldin
    Nature Materials, 2019, 18 : 223 - 228