Optimization of plasmonic metasurfaces: A homogenization-based design

被引:1
|
作者
Lebbe, Nicolas [1 ]
Pham, Kim [2 ]
Maurel, Agnes [3 ]
机构
[1] Univ Toulouse, UPS, LAPLACE, CNRS,INPT, 2 Rue Charles Camichel, F-31071 Toulouse, France
[2] ENSTA Paris, IMSIA, CNRS, EDF,CEA,ENSTA,Inst Polytech Paris, 828 Bd Marechaux, F-91732 Palaiseau, France
[3] Univ Paris, Sorbonne Univ, Univ PSL, Inst Langevin,ESPCI Paris,CNRS, 1 Rue Jussieu, F-75005 Paris, France
关键词
Interface homogenization; Quasi-periodic homogenization; Optimization; Finite element method; TOPOLOGY OPTIMIZATION; PROPAGATION; REFLECTION;
D O I
10.1016/j.jcp.2023.112553
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article deals with the optimization of resonant plasmonic metasurfaces through their surface-homogenized counterpart. The derivation of effective transition conditions that takes into account the spatially varying geometries is done using locally periodic surface homogenization. The resulting model reduces the numerical cost of simulating these metasurfaces, thus allowing to find their design using adjoint-based optimization methods. This new algorithm is presented in details, together with various numerical examples to asses its validity and compare its performance with the classical design based on local phase matching.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] On approaches for avoiding low-stiffness regions in variable thickness sheet and homogenization-based topology optimization
    Giele, Reinier
    Groen, Jeroen
    Aage, Niels
    Andreasen, Casper Schousboe
    Sigmund, Ole
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (01) : 39 - 52
  • [42] Homogenization-based topology optimization for self-supporting additive-manufactured lattice-infilled structure
    Jia, Heran
    Duan, Shengyu
    Zhang, Zhong
    Yen, Ching-Chiuan
    Lu, Wen Feng
    Lei, Hongshuai
    MATERIALS & DESIGN, 2024, 245
  • [43] Simple Homogenization-Based Approach to Predict Raveling in Porous Asphalt
    Zhang, Hong
    Anupam, Kumar
    Skarpas, Athanasios
    Kasbergen, Cor
    Erkens, Sandra
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (12) : 263 - 277
  • [44] Extended narrow escape problem: Boundary homogenization-based analysis
    Berezhkovskii, A. M.
    Barzykin, A. V.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [45] Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications
    Wang, Jian
    Du, Jing
    APPLIED SCIENCES-BASEL, 2016, 6 (09):
  • [46] A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
    Berke, P. Z.
    Peerlings, R. H. J.
    Massart, T. J.
    Geers, M. G. D.
    COMPUTATIONAL MECHANICS, 2014, 53 (05) : 909 - 923
  • [47] Homogenization-based multivariable element method for pure torsion of composite shafts
    Karihaloo, BL
    Xiao, QZ
    Wu, CC
    COMPUTERS & STRUCTURES, 2001, 79 (18) : 1645 - 1660
  • [49] A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
    P. Z. Berke
    R. H. J. Peerlings
    T. J. Massart
    M. G. D. Geers
    Computational Mechanics, 2014, 53 : 909 - 923
  • [50] Damage Evolution in Composites with a Homogenization-based Continuum Damage Mechanics Model
    Jain, Jayesh R.
    Ghosh, Somnath
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2009, 18 (06) : 533 - 568