The shadows of accelerating Kerr-Newman black hole and constraints from M87

被引:5
|
作者
Sui, Tao-Tao [1 ]
Fu, Qi-Ming [2 ,3 ]
Guo, Wen-Di [4 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 211106, Peoples R China
[2] Shaanxi Univ Technol, Inst Phys, Hanzhong 723000, Peoples R China
[3] Northeastern Univ, Coll Sci, Dept Phys, Shenyang 110819, Peoples R China
[4] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
[5] Lanzhou Univ, Res Ctr Gravitat, Lanzhou 730000, Peoples R China
基金
中国博士后科学基金;
关键词
FAMILY; MASS;
D O I
10.1016/j.physletb.2023.138135
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the influence of the parameters for the accelerating Kerr-Newman black hole on the shadows and the constraints, extensively. We find that the rotating parameter a, the charge parameter e, and the inclination angle theta(0) affect the shadow qualitatively similar to that of Kerr-Newman black holes. The result shows that the size of the shadow will scale down with the accelerating factor A. Besides, the factor A also can affect the best viewing angles, which make the observations maximum deviate from theta(0) = pi/2 , and the degree of the deviations are less than 1%. Then, we assume the M87* as an accelerating Kerr-Newman black hole with the mass M = 6.5 x 10(9)M(circle dot) and the distance r(0) = 16.8Mpc. Combining the EHT observations, we find that neither the observations, circularity deviation Delta C or axial ratio D-x can distinguish the accelerating black hole or not. However, the characteristic areal-radius of the shadow curve R-alpha can give corresponding constraints on the parameters of the accelerating Kerr-Newman black hole. The result shows that the bigger accelerating factor A is, the stronger constraints on the rotating parameter a and charged parameter e. The maximum range of the accelerating factor is Ar-0 <= 0.558 for a accelerating Schwarzschild case with (alpha/M = e/M = 0), and for an extremely slow accelerating case (Ar-0 <= 0.01), the ranges of rotating parameter a and charged parameter e are a/M is an element of (0, 1) and e/M is an element of (0, 0.9).(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP(3).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Shadows of hairy Kerr black holes and constraints from M87
    Ghosh, Sushant G.
    Afrin, Misba
    [J]. SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1167 - 1178
  • [2] From schwarzschild black hole to Kerr-Newman black hole
    Liu, WB
    Li, X
    [J]. ACTA PHYSICA SINICA, 1999, 48 (10) : 1793 - 1799
  • [3] Entropy in the Kerr-Newman black hole
    Ho, J
    Kim, WT
    Park, YJ
    Shin, H
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) : 2617 - 2625
  • [4] Shadow of Kerr black hole surrounded by a cloud of strings in Rastall gravity and constraints from M87
    Sun, Qi
    Zhang, Yu
    Xie, Chen-Hao
    Li, Qi-Quan
    [J]. PHYSICS OF THE DARK UNIVERSE, 2024, 46
  • [5] Hawking radiation of the Kerr-Newman black hole
    Chen, DeYou
    Yang, ShuZheng
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (12) : 3067 - 3071
  • [6] Rindler approximation to Kerr-Newman black hole
    H. A. Camargo
    M. Socolovsky
    [J]. The European Physical Journal Plus, 130
  • [7] Statistical entropy of Kerr-Newman black hole
    Zhao, Ren
    Zhang, Li-Chun
    [J]. Wuli Xuebao/Acta Physica Sinica, 2002, 51 (06): : 1169 - 1170
  • [8] Entropy correction to Kerr-Newman black hole
    Zeng Xiao-Xiong
    [J]. ACTA PHYSICA SINICA, 2010, 59 (01) : 92 - 96
  • [9] Rindler approximation to Kerr-Newman black hole
    Camargo, H. A.
    Socolovsky, M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 6
  • [10] Kerr-Newman black hole as spinning particle
    Burinskii, Alexander
    [J]. XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435