Rindler approximation to Kerr-Newman black hole

被引:0
|
作者
H. A. Camargo
M. Socolovsky
机构
[1] Universidad Nacional Autónoma de México Circuito Exterior,Facultad de Ciencias
[2] Ciudad Universitaria,Instituto de Ciencias Nucleares
[3] Universidad Nacional Autónoma de México Circuito Exterior,undefined
[4] Ciudad Universitaria,undefined
关键词
Black Hole; Event Horizon; Surface Gravity; Shadowed Region; Timelike Curve;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Rindler approximation to the time-radial part of the Kerr and Kerr-Newman metrics near their external \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{+}$\end{document} and internal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{-}$\end{document} horizons only holds outside\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{+}$\end{document} and inside\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{-}$\end{document}, so respectively inside and outside the external and internal ergospheres, regions where, in Boyer-Lindquist coordinates, both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{tt}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{rr}$\end{document} are negative, but preserving the Lorentzian character of the metric, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r > 0$\end{document}i.e. outside the region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r < 0$\end{document} where closed timelike curves exist. At each point, the choice of Rindler coordinates is not trivial, but depends on the polar angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta$\end{document}. The approximation, as is known, automatically gives the absolute values of the surface gravities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa_{\pm}$\end{document} as the corresponding proper accelerations, and therefore the Hawking temperatures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau_{\pm}$\end{document} at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{\pm}$\end{document} .
引用
收藏
相关论文
共 50 条
  • [1] Rindler approximation to Kerr-Newman black hole
    Camargo, H. A.
    Socolovsky, M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 6
  • [2] Entropy in the Kerr-Newman black hole
    Ho, J
    Kim, WT
    Park, YJ
    Shin, H
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) : 2617 - 2625
  • [3] From schwarzschild black hole to Kerr-Newman black hole
    Liu, WB
    Li, X
    [J]. ACTA PHYSICA SINICA, 1999, 48 (10) : 1793 - 1799
  • [4] Hawking radiation of the Kerr-Newman black hole
    Chen, DeYou
    Yang, ShuZheng
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (12) : 3067 - 3071
  • [5] Entropy correction to Kerr-Newman black hole
    Zeng Xiao-Xiong
    [J]. ACTA PHYSICA SINICA, 2010, 59 (01) : 92 - 96
  • [6] Spinning Particle as Kerr-Newman "Black Hole"
    Burinskii, A.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 724 - 729
  • [7] Kerr-Newman black hole as spinning particle
    Burinskii, Alexander
    [J]. XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435
  • [8] Statistical entropy of Kerr-Newman black hole
    Zhao, R
    Zhang, LC
    [J]. ACTA PHYSICA SINICA, 2002, 51 (06) : 1167 - 1170
  • [9] Quantization of Kerr-Newman Black Hole Entropy
    Guang-Hui Zhao
    Chuan-An Li
    [J]. International Journal of Theoretical Physics, 2017, 56 : 2450 - 2457
  • [10] Hawking radiation of Kerr-Newman black hole
    Zhao Ren
    Zhang Li-Chun
    Li Huai-Fan
    [J]. ACTA PHYSICA SINICA, 2010, 59 (05) : 2982 - 2986