Structural evolution and redox chemistry of robust ternary layered oxide cathode for sodium-ion batteries

被引:13
|
作者
Li, Ting [1 ]
Lu, Meiling [1 ]
Zhang, Yangyang [1 ]
Xiang, Xingde [1 ]
Liu, Song [2 ]
Chen, Chunxia [2 ]
机构
[1] Northeast Forestry Univ, Coll Chem & Chem Engn & Resource Utilizat, Heilongjiang Key Lab Mol Design & Preparat Flame R, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Key Lab Forest Plant Ecol, Minist Educ, Harbin 150040, Peoples R China
关键词
Sodium ion batteries; Layered oxides; High-capacity cathode; Structural evolution; Redox Chemistry; PERFORMANCE; LITHIUM; NANOPARTICLES; TRANSITION; ELECTRODE;
D O I
10.1016/j.jallcom.2024.173459
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel/manganese-based O3-type layered oxides have been widely deemed to be a family of promising cathode materials for sodium-ion batteries (SIBs) owing to the large theoretical specific capacity and low manufacturing cost, but being usually challenged by unsatisfied electrochemical performance. In this study, a novel ternary layered oxide NaNi1/2Mn1/4Ti1/4O2 is reported as a robust high-capacity cathode for SIBs, and its structural evolution and redox chemistry in the potential range of 1.5-4.2 V (vs Na+/Na) are carefully explored by coupling X-ray diffraction technique, X-ray photoelectron spectroscopy, transmission electron microscope, FTIR spectroscopy, and galvanostatic measurement. Experimental facts reveal that the material undergoes multiple structural phase evolutions involving two solid-solution regions and one two-phase region based on the redox chemistry of Ni2+/Ni3+ and Ni3+/Ni4+ couples. It exhibits excellent electrochemical performance with a high reversible capacity of 145.2 mAh g-1 and an impressive capacity retention of 85.1% after 100 cycles due to the unique structure with robust ternary composition and stable coating interface. The coating interface is mainly related with formation of the amorphous carbonate layer at preparation step and the CEI film containing alkoxy group during the first charge. In addition, initial Na extraction from the material suffers from a "potential jump" phenomenon owing to severe electrochemical polarization caused by large interfacial impedance and chargetransfer impedance. This work provides new insights on interfacial change, structural evolution and redox reaction of high-capacity O3-type layered oxide cathode during Na extraction/insertion.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries
    Luo, Chao
    Xu, Gui-Liang
    Ji, Xiao
    Hou, Singyuk
    Chen, Long
    Wang, Fei
    Jiang, Jianjun
    Chen, Zonghai
    Ren, Yang
    Amine, Khalil
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (11) : 2879 - 2883
  • [32] Synergetic Anion-Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries
    Li, Xiang
    Xu, Jialiang
    Li, Haoyu
    Zhu, Hong
    Guo, Shaohua
    Zhou, Haoshen
    ADVANCED SCIENCE, 2022, 9 (16)
  • [33] Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content
    Bao, Shuo
    Luo, Shao-hua
    Wang, Zhi-yuan
    Yan, Sheng-xue
    Wang, Qing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 544 : 164 - 171
  • [34] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Luo, Wen
    Gaumet, Jean-Jacques
    Mai, Liqiang
    MRS COMMUNICATIONS, 2017, 7 (02) : 152 - 165
  • [35] A heterobimetallic single-source precursor enabled layered oxide cathode for sodium-ion batteries
    Li, Maofan
    Yang, Kai
    Liu, Jiajie
    Hu, Xiaobing
    Kong, Defei
    Liu, Tongchao
    Zhang, Mingjian
    Pan, Feng
    CHEMICAL COMMUNICATIONS, 2018, 54 (76) : 10714 - 10717
  • [36] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Wen Luo
    Jean-Jacques Gaumet
    Liqiang Mai
    MRS Communications, 2017, 7 : 152 - 165
  • [37] Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries
    Wang, Yan
    Ding, Ning
    Zhang, Rui
    Jin, Guanhua
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2024, 18 (07)
  • [38] Core-Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Chen, Cheng
    Han, Zhen
    Chen, Shuangqiang
    Qi, Shuo
    Lan, Xinyue
    Zhang, Chunchen
    Chen, Lin
    Wang, Peng
    Wei, Weifeng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7144 - 7152
  • [39] Clarifying the Roles of Cobalt and Nickel in the Structural Evolution of Layered Cathodes for Sodium-Ion Batteries
    Wu, Duojie
    Yang, Xuming
    Feng, Shihui
    Zhu, Yuanmin
    Gu, Meng
    NANO LETTERS, 2021, 21 (22) : 9619 - 9624
  • [40] Transition Metal Vacancy in Layered Cathode Materials for Sodium-Ion Batteries
    Li, Xun-Lu
    Ma, Cui
    Zhou, Yong-Ning
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (22)