Smooth torus quotients of Richardson varieties in the Grassmannian

被引:0
|
作者
Bakshi, Sarjick [1 ]
机构
[1] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India
关键词
GIT; semistable points; Richardson varieties;
D O I
10.1142/S0219498825501245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k and n be positive coprime integers with k < n. Let T denote the subgroup of diagonal matrices in SL(n, C). We study the GIT quotient of Richardson varieties X-w(v) in the Grassmannian Gr(k,n) by T with respect to a T-linearized line bundle L corresponding to the Plucker embedding. We give necessary and sufficient combinatorial conditions for the quotient variety T\\(X-w(v))(T)(ss) (L) to be smooth.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Critical Varieties in the Grassmannian
    Galashin, Pavel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (03) : 3277 - 3333
  • [32] Torus quotients as global quotients by finite groups
    Geraschenko, Anton
    Satriano, Matthew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 736 - 759
  • [33] Critical Varieties in the Grassmannian
    Pavel Galashin
    Communications in Mathematical Physics, 2023, 401 : 3277 - 3333
  • [34] Free quotients of fundamental groups of smooth quasi-projective varieties
    Cogolludo, Jose, I
    Libgober, Anatoly
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (04) : 924 - 946
  • [35] On Chow Quotients of Torus Actions
    Baeker, Hendrik
    Hausen, Juergen
    Keicher, Simon
    MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (03) : 451 - 473
  • [36] Torus quotients of homogeneous spaces
    S Senthamarai Kannan
    Proceedings Mathematical Sciences, 1998, 108 : 1 - 12
  • [37] Torus quotients of homogeneous spaces
    Kannan, SS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (01): : 1 - 12
  • [38] Quotients on the Sato Grassmannian and the moduli of vector bundles
    Casimiro, A. C.
    Porras, J. M. Munoz
    Martin, F. J. Plaza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (19)
  • [39] PONTRYAGIN RING OF TORUS QUOTIENTS
    BAUES, HJ
    MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (03) : 221 - 228
  • [40] Orbifold cohomology of torus quotients
    Goldin, Rebecca
    Holm, Tara S.
    Knutson, Allen
    DUKE MATHEMATICAL JOURNAL, 2007, 139 (01) : 89 - 139