Smooth torus quotients of Richardson varieties in the Grassmannian

被引:0
|
作者
Bakshi, Sarjick [1 ]
机构
[1] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India
关键词
GIT; semistable points; Richardson varieties;
D O I
10.1142/S0219498825501245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k and n be positive coprime integers with k < n. Let T denote the subgroup of diagonal matrices in SL(n, C). We study the GIT quotient of Richardson varieties X-w(v) in the Grassmannian Gr(k,n) by T with respect to a T-linearized line bundle L corresponding to the Plucker embedding. We give necessary and sufficient combinatorial conditions for the quotient variety T\\(X-w(v))(T)(ss) (L) to be smooth.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Torus quotients of Richardson varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Venkata, Subrahmanyam K.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 891 - 914
  • [2] Smooth torus quotients of Schubert varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [3] Torus quotients of Richardson varieties
    Kannan, S. S.
    Paramasamy, K.
    Pattanayak, S. K.
    Upadhyay, Shyamashree
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 254 - 261
  • [4] Torus quotients of Schubert varieties in the Grassmannian G2,n
    Kannan, S. Senthamarai
    Nayek, Arpita
    Saha, Pinakinath
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 273 - 293
  • [5] Torus quotients of Richardson varieties in Gr,qr+1
    Kannan, S. Senthamarai
    Nayek, Arpita
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02):
  • [6] Richardson varieties in the Grassmannian
    Kreiman, V
    Lakshmibai, V
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 573 - 597
  • [7] On the Torus quotients of Schubert varieties
    Bonala, Narasimha Chary
    Pattanayak, Santosha Kumar
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)
  • [8] Torus quotients of some flag varieties
    Dake, Somnath
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02):
  • [9] Quotients of flag varieties by a maximal torus
    Elisabetta Strickland
    Mathematische Zeitschrift, 2000, 234 : 1 - 7
  • [10] Quotients of flag varieties by a maximal torus
    Strickland, E
    MATHEMATISCHE ZEITSCHRIFT, 2000, 234 (01) : 1 - 7