Column cyclic rank metric codes and linear complementary dual rank metric codes

被引:0
|
作者
de la Cruz, Javier [1 ]
Ozbudak, Ferruh [2 ]
机构
[1] Univ Norte, Dept Math & Stat, Barranquilla 081007, Colombia
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkiye
关键词
Column cyclic codes; rank metric codes; linear complementary dual codes;
D O I
10.1142/S0219498825500689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study column cyclic rank metric (CCRM) codes over finite fields. We present natural questions for the existence and characterization of CCRM codes. We completely solve these questions only in the first nontrivial case: The case of the minimum rank distance d = 2 and the number of rows m = 2. We also consider linear complementary dual rank metric (LCDRM) codes both in the setting of CCRM codes and in the general setting of rank metric codes. We also ask the natural questions for the existence and characterization of CCRM codes in the subclass of LCDRM codes. We also completely solve these questions for this subclass of LCDRM codes only in the first nontrivial case that d = 2 and m = 2. Moreover we extend a characterization of linear complementary dual (LCD) codes of Massey to arbitrary rank metric codes in the general setting.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] MRD Rank Metric Convolutional Codes
    Napp, Diego
    Pinto, Raquel
    Rosenthal, Joachim
    Vettori, Paolo
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2766 - 2770
  • [22] On the List Decodability of Rank Metric Codes
    Trombetti, Rocco
    Zullo, Ferdinando
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5379 - 5386
  • [23] On kernels and nuclei of rank metric codes
    Lunardon, Guglielmo
    Trombetti, Rocco
    Zhou, Yue
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (02) : 313 - 340
  • [24] Covering properties of rank metric codes
    Gadouleau, Maximilien
    Yan, Zhiyuan
    [J]. GLOBECOM 2007: 2007 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-11, 2007, : 1446 - 1450
  • [25] MacWilliams identity for codes with the rank metric
    Gadouleau, Maximilien
    Yan, Zhiyuan
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2008, 2008 (1)
  • [26] MacWilliams Identity for Codes with the Rank Metric
    Maximilien Gadouleau
    Zhiyuan Yan
    [J]. EURASIP Journal on Wireless Communications and Networking, 2008
  • [27] A new rank metric for convolutional codes
    Almeida, P.
    Napp, D.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (01) : 53 - 73
  • [28] Rank metric codes and zeta functions
    I. Blanco-Chacón
    E. Byrne
    I. Duursma
    J. Sheekey
    [J]. Designs, Codes and Cryptography, 2018, 86 : 1767 - 1792
  • [29] Hermitian Rank Metric Codes and Duality
    La Cruz, Javier De
    Evilla, Jorge Robinson
    Ozbudak, Ferruh
    [J]. IEEE ACCESS, 2021, 9 : 38479 - 38487
  • [30] Bounds on Covering Codes with the Rank Metric
    Gadouleau, Maximilien
    Yan, Zhiyuan
    [J]. IEEE COMMUNICATIONS LETTERS, 2009, 13 (09) : 691 - 693