Algorithms for efficient multi-temporal change detection in SAR imagery

被引:0
|
作者
Allen, Michael [1 ]
Kosianka, Justyna W. [1 ]
Perillo, Mark [1 ]
机构
[1] Ursa Space Syst, 130 E Seneca St 520, Ithaca, NY 14850 USA
关键词
SAR; Change Detection; Time Series; Forest Change; Deforestation;
D O I
10.1117/12.2663997
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advancements in the tasking and collection capabilities of SAR providers have reduced the spatiotemporal constraints on SAR-based change detection. As data constraints are relaxed, pairwise SAR-based change detection algorithms are rapidly becoming insufficient for summarizing change activity. To address this, we present two multi-temporal change detection algorithms that categorize, filter, and reduce the changes detected in any number of repeat pass SAR scenes: (1) Object Permanence change detection (OPcd); and (2) Activity Exclusion change detection (AEcd). When compared to traditional pairwise change detection methods, OPcd and AEcd allow for rapid digestion and efficient visualization of changes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Change detection by classification of a multi-temporal image
    Gorte, B
    INTEGRATED SPATIAL DATABASES: DIGITAL IMAGES AND GIS, 1999, 1737 : 105 - 121
  • [32] Change vector analysis method for inundation change detection using multi-temporal multi-polarized SAR images
    Shen, Guozhuang
    Guo, Huadong
    Liao, Jingjuan
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [33] Characterization and Geomorphic Change Detection of Landslides Using UAV Multi-Temporal Imagery in the Himalayas, Pakistan
    Ahmad, Naseem
    Shafique, Muhammad
    Hussain, Mian Luqman
    Islam, Fakhrul
    Tariq, Aqil
    Soufan, Walid
    LAND, 2024, 13 (07)
  • [34] A multi-temporal classifier for SIR-C/X-SAR imagery
    Bergen, KM
    Pierce, LE
    Dobson, MC
    Ulaby, FT
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1568 - 1570
  • [35] Deep Canonical Correlation Analysis Network for Scene Change Detection of Multi-Temporal VHR Imagery
    Ru, Lixiang
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [36] Fusion of features in multi-temporal SAR imagery to detect changes in urban areas
    Cao, Guangzhen
    Hou, Peng
    Jin, Ya-Qiu
    Mao, Xianqiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (22) : 5989 - 6001
  • [37] UNSUPERVISED CHANGE DETECTION IN BUILT-UP AREAS BY MULTI-TEMPORAL POLARIMETRIC SAR IMAGES
    Pirrone, Davide
    De, Shaunak
    Bhattacharya, Avik
    Bruzzone, Lorenzo
    Bovolo, Francesca
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4554 - 4557
  • [38] AGRICULTURAL FIELDS MONITORING WITH MULTI-TEMPORAL POLARIMETRIC SAR (MT-POLSAR) CHANGE DETECTION
    Silva, Cristian
    Marino, Armando
    Lopez-Sanchez, Juan M.
    Cameron, Iain
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4554 - 4557
  • [39] Evolving land cover classification algorithms for multi-spectral and multi-temporal imagery
    Brumby, SP
    Theiler, J
    Bloch, JJ
    Harvey, NR
    Perkins, S
    Szymanski, JJ
    Young, AC
    IMAGING SPECTROMETRY VII, 2001, 4480 : 120 - 129
  • [40] A feature based change detection approach using multi-scale orientation for multi-temporal SAR images
    Vijaya Geetha, R.
    Kalaivani, S.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (sup2) : 248 - 264